隨機初始化Embeddingnode
from keras.models import Sequential from keras.layers import Embedding import numpy as np model = Sequential() model.add(Embedding(1000, 64, input_length=10)) # the model will take as input an integer matrix of size (batch, input_length). # the largest integer (i.e. word index) in the input should be no larger than 999 (vocabulary size). # now model.output_shape == (None, 10, 64), where None is the batch dimension. input_array = np.random.randint(1000, size=(32, 10)) model.compile('rmsprop', 'mse') output_array = model.predict(input_array) print(output_array) assert output_array.shape == (32, 10, 64)
使用weights參數指明embedding初始值python
import numpy as np import keras m = keras.models.Sequential() """ 能夠經過weights參數指定初始的weights參數 由於Embedding層是不可導的 梯度東流至此回,因此把embedding放在中間層是沒有意義的,emebedding只能做爲第一層 注意weights到embeddings的綁定過程很複雜,weights是一個列表 """ embedding = keras.layers.Embedding(input_dim=3, output_dim=2, input_length=1, weights=[np.arange(3 * 2).reshape((3, 2))], mask_zero=True) m.add(embedding) # 一旦add,就會自動調用embedding的build函數, print(keras.backend.get_value(embedding.embeddings)) m.compile(keras.optimizers.RMSprop(), keras.losses.mse) print(m.predict([1, 2, 2, 1, 2, 0])) print(m.get_layer(index=0).get_weights()) print(keras.backend.get_value(embedding.embeddings))
給embedding設置初始值的第二種方式:使用initializer數組
import numpy as np import keras m = keras.models.Sequential() """ 能夠經過weights參數指定初始的weights參數 由於Embedding層是不可導的 梯度東流至此回,因此把embedding放在中間層是沒有意義的,emebedding只能做爲第一層 給embedding設置權值的第二種方式,使用constant_initializer """ embedding = keras.layers.Embedding(input_dim=3, output_dim=2, input_length=1, embeddings_initializer=keras.initializers.constant(np.arange(3 * 2, dtype=np.float32).reshape((3, 2)))) m.add(embedding) print(keras.backend.get_value(embedding.embeddings)) m.compile(keras.optimizers.RMSprop(), keras.losses.mse) print(m.predict([1, 2, 2, 1, 2])) print(m.get_layer(index=0).get_weights()) print(keras.backend.get_value(embedding.embeddings))
關鍵的難點在於理清weights是怎麼傳入到embedding.embeddings張量裏面去的。app
Embedding是一個層,繼承自Layer,Layer有weights參數,weights參數是一個list,裏面的元素都是numpy數組。在調用Layer的構造函數的時候,weights參數就被存儲到了_initial_weights
變量 basic_layer.py 之Layer類dom
if 'weights' in kwargs: self._initial_weights = kwargs['weights'] else: self._initial_weights = None
當把Embedding層添加到模型中、跟模型的上一層進行拼接的時候,會調用layer(上一層)函數,此處layer是Embedding實例,Embedding是一個繼承了Layer的類,Embedding類沒有重寫__call__()
方法,Layer實現了__call__()
方法。父類Layer的__call__
方法調用子類的call()方法來獲取結果。因此最終調用的是Layer.__call__()
。在這個方法中,會自動檢測該層是否build過(根據self.built布爾變量)。ide
Layer.__call__
函數很是重要。函數
def __call__(self, inputs, **kwargs): """Wrapper around self.call(), for handling internal references. If a Keras tensor is passed: - We call self._add_inbound_node(). - If necessary, we `build` the layer to match the _keras_shape of the input(s). - We update the _keras_shape of every input tensor with its new shape (obtained via self.compute_output_shape). This is done as part of _add_inbound_node(). - We update the _keras_history of the output tensor(s) with the current layer. This is done as part of _add_inbound_node(). # Arguments inputs: Can be a tensor or list/tuple of tensors. **kwargs: Additional keyword arguments to be passed to `call()`. # Returns Output of the layer's `call` method. # Raises ValueError: in case the layer is missing shape information for its `build` call. """ if isinstance(inputs, list): inputs = inputs[:] with K.name_scope(self.name): # Handle laying building (weight creating, input spec locking). if not self.built:#若是不曾build,那就要先執行build再調用call函數 # Raise exceptions in case the input is not compatible # with the input_spec specified in the layer constructor. self.assert_input_compatibility(inputs) # Collect input shapes to build layer. input_shapes = [] for x_elem in to_list(inputs): if hasattr(x_elem, '_keras_shape'): input_shapes.append(x_elem._keras_shape) elif hasattr(K, 'int_shape'): input_shapes.append(K.int_shape(x_elem)) else: raise ValueError('You tried to call layer "' + self.name + '". This layer has no information' ' about its expected input shape, ' 'and thus cannot be built. ' 'You can build it manually via: ' '`layer.build(batch_input_shape)`') self.build(unpack_singleton(input_shapes)) self.built = True#這句話其實有些多餘,由於self.build函數已經把built置爲True了 # Load weights that were specified at layer instantiation. if self._initial_weights is not None:#若是傳入了weights,把weights參數賦值到每一個變量,此處會覆蓋上面的self.build函數中的賦值。 self.set_weights(self._initial_weights) # Raise exceptions in case the input is not compatible # with the input_spec set at build time. self.assert_input_compatibility(inputs) # Handle mask propagation. previous_mask = _collect_previous_mask(inputs) user_kwargs = copy.copy(kwargs) if not is_all_none(previous_mask): # The previous layer generated a mask. if has_arg(self.call, 'mask'): if 'mask' not in kwargs: # If mask is explicitly passed to __call__, # we should override the default mask. kwargs['mask'] = previous_mask # Handle automatic shape inference (only useful for Theano). input_shape = _collect_input_shape(inputs) # Actually call the layer, # collecting output(s), mask(s), and shape(s). output = self.call(inputs, **kwargs) output_mask = self.compute_mask(inputs, previous_mask) # If the layer returns tensors from its inputs, unmodified, # we copy them to avoid loss of tensor metadata. output_ls = to_list(output) inputs_ls = to_list(inputs) output_ls_copy = [] for x in output_ls: if x in inputs_ls: x = K.identity(x) output_ls_copy.append(x) output = unpack_singleton(output_ls_copy) # Inferring the output shape is only relevant for Theano. if all([s is not None for s in to_list(input_shape)]): output_shape = self.compute_output_shape(input_shape) else: if isinstance(input_shape, list): output_shape = [None for _ in input_shape] else: output_shape = None if (not isinstance(output_mask, (list, tuple)) and len(output_ls) > 1): # Augment the mask to match the length of the output. output_mask = [output_mask] * len(output_ls) # Add an inbound node to the layer, so that it keeps track # of the call and of all new variables created during the call. # This also updates the layer history of the output tensor(s). # If the input tensor(s) had not previous Keras history, # this does nothing. self._add_inbound_node(input_tensors=inputs, output_tensors=output, input_masks=previous_mask, output_masks=output_mask, input_shapes=input_shape, output_shapes=output_shape, arguments=user_kwargs) # Apply activity regularizer if any: if (hasattr(self, 'activity_regularizer') and self.activity_regularizer is not None): with K.name_scope('activity_regularizer'): regularization_losses = [ self.activity_regularizer(x) for x in to_list(output)] self.add_loss(regularization_losses, inputs=to_list(inputs)) return output
若是沒有build過,會自動調用Embedding類的build()函數。Embedding.build()這個函數並不會去管weights,若是它使用的initializer沒有傳入,self.embeddings_initializer
會變成隨機初始化。若是傳入了,那麼在這一步就可以把weights初始化好。若是同時傳入embeddings_initializer
和weights參數,那麼weights參數稍後會把Embedding#embeddings
覆蓋掉。ui
embedding.py Embedding類的build函數this
def build(self, input_shape): self.embeddings = self.add_weight( shape=(self.input_dim, self.output_dim), initializer=self.embeddings_initializer, name='embeddings', regularizer=self.embeddings_regularizer, constraint=self.embeddings_constraint, dtype=self.dtype) self.built = True
綜上,在keras中,使用weights給Layer的變量賦值是一個比較通用的方法,可是不夠直觀。keras鼓勵多多使用明確的initializer,而儘可能不要觸碰weights。code