TensorFlow 的 JupyterLab 環境

TensorFlow 準備 JupyterLab 交互式筆記本環境,方便咱們邊寫代碼、邊作筆記。html

基礎環境

如下是本文的基礎環境,不詳述安裝過程了。node

Ubuntu

CUDA

  • CUDA 11.2.2linux

    • cuda_11.2.2_460.32.03_linux.run
  • cuDNN 8.1.1git

    • libcudnn8_8.1.1.33-1+cuda11.2_amd64.deb
    • libcudnn8-dev_8.1.1.33-1+cuda11.2_amd64.deb
    • libcudnn8-samples_8.1.1.33-1+cuda11.2_amd64.deb

Anaconda

conda activate base

安裝 JupyterLab

Anaconda 環境裏已有,以下查看版本:ubuntu

jupyter --version

否則,以下進行安裝:bash

conda install -c conda-forge jupyterlab

安裝 TensorFlow

建立虛擬環境 tf,再 pip 安裝 TensorFlow:ionic

# create virtual environment
conda create -n tf python=3.8 -y
conda activate tf

# install tensorflow
pip install --upgrade pip
pip install tensorflow

測試:ide

$ python - <<EOF
import tensorflow as tf
print(tf.__version__, tf.test.is_built_with_gpu_support())
print(tf.config.list_physical_devices('GPU'))
EOF
2021-04-01 11:18:17.719061: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2.4.1 True
2021-04-01 11:18:18.437590: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-04-01 11:18:18.437998: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2021-04-01 11:18:18.458471: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-01 11:18:18.458996: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce RTX 2060 computeCapability: 7.5
coreClock: 1.35GHz coreCount: 30 deviceMemorySize: 5.79GiB deviceMemoryBandwidth: 245.91GiB/s
2021-04-01 11:18:18.459034: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-01 11:18:18.461332: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-04-01 11:18:18.461362: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-04-01 11:18:18.462072: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-04-01 11:18:18.462200: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-04-01 11:18:18.462745: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-04-01 11:18:18.463241: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2021-04-01 11:18:18.463353: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-04-01 11:18:18.463415: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-01 11:18:18.463854: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-01 11:18:18.464170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Solution: Could not load dynamic library 'libcusolver.so.10'

cd /usr/local/cuda/lib64
sudo ln -sf libcusolver.so.11 libcusolver.so.10

安裝 IPython kernel

在虛擬環境 tf 裏,安裝 ipykernel 與 Jupyter 交互。

# install ipykernel (conda new environment)
conda activate tf
conda install ipykernel -y
python -m ipykernel install --user --name tf --display-name "Python TF"

# run JupyterLab (conda base environment with JupyterLab)
conda activate base
jupyter lab

<!--
jupyter kernelspec list
jupyter kernelspec remove tf
-->

另外一種方式,可用 nb_conda 擴展,其於筆記裏會激活 Conda 環境:

# install ipykernel (conda new environment)
conda activate tf
conda install ipykernel -y

# install nb_conda (conda base environment with JupyterLab)
conda activate base
conda install nb_conda -y
# run JupyterLab
jupyter lab

最後,訪問 http://localhost:8888/

參考

GoCoding 我的實踐的經驗分享,可關注公衆號!
相關文章
相關標籤/搜索