使用OpenCV實現圖像加強


點擊上方小白學視覺」,選擇加"星標"或「置頂算法

重磅乾貨,第一時間送達swift

本期將介紹如何經過圖像處理從低分辨率/模糊/低對比度的圖像中提取有用信息。微信

下面讓咱們一塊兒來探究這個過程:app

首先咱們獲取了一個LPG氣瓶圖像,該圖像取自在傳送帶上運行的倉庫。咱們的目標是找出LPG氣瓶的批號,以便更新已檢測的LPG氣瓶數量。函數

步驟1:導入必要的庫ui

import cv2import numpy as npimport matplotlib.pyplot as plt

步驟2:加載圖像並顯示示例圖像。spa

img= cv2.imread('cylinder1.png')img1=cv2.imread('cylinder.png')images=np.concatenate(img(img,img1),axis=1)cv2.imshow("Images",images)cv2.waitKey(0)cv2.destroyAllWindows()

LPG氣瓶圖片(a)批次-D26(b)批次C27.net

該圖像的對比度很是差。咱們幾乎看不到批號。這是在燈光條件不足的倉庫中的常見問題。接下來咱們將討論對比度受限的自適應直方圖均衡化,並嘗試對數據集使用不一樣的算法進行實驗。3d

步驟3:將圖像轉換爲灰度圖像code

gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)gray_img1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)

步驟4:找到灰度圖像的直方圖後,尋找強度的分佈。

hist=cv2.calcHist(gray_img,[0],None,[256],[0,256])hist1=cv2.calcHist(gray_img1,[0],None,[256],[0,256])plt.subplot(121)plt.title("Image1")plt.xlabel('bins')plt.ylabel("No of pixels")plt.plot(hist)plt.subplot(122)plt.title("Image2")plt.xlabel('bins')plt.ylabel("No of pixels")plt.plot(hist1)plt.show()

步驟5:如今,使用cv2.equalizeHist()函數來均衡給定灰度圖像的對比度。cv2.equalizeHist()函數可標準化亮度並增長對比度。

gray_img_eqhist=cv2.equalizeHist(gray_img)gray_img1_eqhist=cv2.equalizeHist(gray_img1)hist=cv2.calcHist(gray_img_eqhist,[0],None,[256],[0,256])hist1=cv2.calcHist(gray_img1_eqhist,[0],None,[256],[0,256])plt.subplot(121)plt.plot(hist)plt.subplot(122)plt.plot(hist1)plt.show()

步驟6:顯示灰度直方圖均衡圖像

eqhist_images=np.concatenate((gray_img_eqhist,gray_img1_eqhist),axis=1)cv2.imshow("Images",eqhist_images)cv2.waitKey(0)cv2.destroyAllWindows()


灰度直方圖均衡

讓咱們進一步深刻了解CLAHE

步驟7:

對比度有限的自適應直方圖均衡

該算法能夠用於改善圖像的對比度。該算法經過建立圖像的多個直方圖來工做,並使用全部這些直方圖從新分配圖像的亮度。CLAHE能夠應用於灰度圖像和彩色圖像。有2個參數須要調整。

1. 限幅設置了對比度限制的閾值。默認值爲40

2. tileGridsize設置行和列中標題的數量。在應用CLAHE時,爲了執行計算,圖像被分爲稱爲圖塊(8 * 8)的小塊。

clahe=cv2.createCLAHE(clipLimit=40)gray_img_clahe=clahe.apply(gray_img_eqhist)gray_img1_clahe=clahe.apply(gray_img1_eqhist)images=np.concatenate((gray_img_clahe,gray_img1_clahe),axis=1)cv2.imshow("Images",images)cv2.waitKey(0)cv2.destroyAllWindows()


步驟8:

門檻技術

閾值處理是一種將圖像劃分爲前景和背景的簡單但有效的方法。若是像素強度小於某個預約義常數(閾值),則最簡單的閾值化方法將源圖像中的每一個像素替換爲黑色像素;若是像素強度大於閾值,則使用白色像素替換源像素。閾值的不一樣類型是:

cv2.THRESH_BINARY

cv2.THRESH_BINARY_INV

cv2.THRESH_TRUNC

cv2.THRESH_TOZERO

cv2.THRESH_TOZERO_INV

cv2.THRESH_OTSU

cv2.THRESH_TRIANGLE

嘗試更改閾值和max_val以得到不一樣的結果。

th=80max_val=255ret, o1 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_BINARY)cv2.putText(o1,"Thresh_Binary",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o2 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_BINARY_INV)cv2.putText(o2,"Thresh_Binary_inv",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o3 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TOZERO)cv2.putText(o3,"Thresh_Tozero",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o4 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TOZERO_INV)cv2.putText(o4,"Thresh_Tozero_inv",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret, o5 = cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_TRUNC)cv2.putText(o5,"Thresh_trunc",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)ret ,o6= cv2.threshold(gray_img_clahe, th, max_val, cv2.THRESH_OTSU)cv2.putText(o6,"Thresh_OSTU",(40,100),cv2.FONT_HERSHEY_SIMPLEX,2,(255,255,255),3,cv2.LINE_AA)
final=np.concatenate((o1,o2,o3),axis=1)final1=np.concatenate((o4,o5,o6),axis=1)
cv2.imwrite("Image1.jpg",final)cv2.imwrite("Image2.jpg",final1)


Thresh_Binary_inv,Thresh_Binary_inv,Thresh_Tozero


Thresh_Tozero_inv,Thresh_trunc,Thresh_OSTU

步驟9:自適應閾值

在上一節中,咱們使用了全局閾值來應用cv2.threshold()。如咱們所見,因爲圖像不一樣區域的照明條件不一樣,所以得到的結果不是很好。在這些狀況下,您能夠嘗試自適應閾值化。在OpenCV中,自適應閾值處理由cv2.adapativeThreshold()函數執行

此功能將自適應閾值應用於src陣列(8位單通道圖像)。maxValue參數設置dst圖像中知足條件的像素的值。adaptiveMethod參數設置要使用的自適應閾值算法。

cv2.ADAPTIVE_THRESH_MEAN_C:將T(x,y)閾值計算爲(x,y)的blockSize x blockSize鄰域的平均值減去C參數。
cv2.ADAPTIVE_THRESH_GAUSSIAN_C:將T(x,y)閾值計算爲(x,y)的blockSize x blockSize鄰域的加權總和減去C參數。

blockSize參數設置用於計算像素閾值的鄰域的大小,它能夠取值三、五、7等。

C參數只是從均值或加權均值中減去的常數(取決於adaptiveMethod參數設置的自適應方法)。一般,此值爲正,但能夠爲零或負。

gray_image = cv2.imread('cylinder1.png',0)gray_image1 = cv2.imread('cylinder.png',0)thresh1 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)thresh2 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 31, 3)thresh3 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 13, 5)thresh4 = cv2.adaptiveThreshold(gray_image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 4)thresh11 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)thresh21 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 31, 5)thresh31 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21,5 )thresh41 = cv2.adaptiveThreshold(gray_image1, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 5)
final=np.concatenate((thresh1,thresh2,thresh3,thresh4),axis=1)final1=np.concatenate((thresh11,thresh21,thresh31,thresh41),axis=1)cv2.imwrite('rect.jpg',final)cv2.imwrite('rect1.jpg',final1)


自適應閾值


自適應閾值

步驟10:OTSU二值化

Otsu的二值化算法,在處理雙峯圖像時是一種很好的方法。雙峯圖像能夠經過其包含兩個峯的直方圖來表徵。Otsu的算法經過最大化兩類像素之間的方差來自動計算將兩個峯分開的最佳閾值。等效地,最佳閾值使組內差別最小化。Otsu的二值化算法是一種統計方法,由於它依賴於從直方圖得出的統計信息(例如,均值,方差或熵)
gray_image = cv2.imread('cylinder1.png',0)gray_image1 = cv2.imread('cylinder.png',0)ret,thresh1 = cv2.threshold(gray_image,0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)ret,thresh2 = cv2.threshold(gray_image1,0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imwrite('rect.jpeg',np.concatenate((thresh1,thresh2),axis=1))


OTSU二值化

如今,咱們已經從低對比度的圖像中清楚地識別出批號。


流羣


歡迎加入公衆號讀者羣一塊兒和同行交流,目前有SLAM、三維視覺、傳感器自動駕駛、計算攝影、檢測、分割、識別、醫學影像、GAN算法競賽等微信羣(之後會逐漸細分),請掃描下面微信號加羣,備註:」暱稱+學校/公司+研究方向「,例如:」張三 + 上海交大 + 視覺SLAM「。請按照格式備註,不然不予經過。添加成功後會根據研究方向邀請進入相關微信羣。請勿在羣內發送廣告,不然會請出羣,謝謝理解~


本文分享自微信公衆號 - 小白學視覺(NoobCV)。
若有侵權,請聯繫 support@oschina.cn 刪除。
本文參與「OSC源創計劃」,歡迎正在閱讀的你也加入,一塊兒分享。

相關文章
相關標籤/搜索