使用一個遵循buffer protocol的對象就能夠和numpy交互了.
這個buffer_protocol要有哪些東西呢? 要有以下接口:
struct buffer_info { void *ptr; ssize_t itemsize; std::string format; ssize_t ndim; std::vector<ssize_t> shape; std::vector<ssize_t> strides; };
其實就是一個指向數組的指針+各個維度的信息就能夠了. 而後咱們就能夠用指針+偏移來訪問數字中的任意位置上的數字了.
下面是一個能夠跑的例子:
1 #include <pybind11/pybind11.h> 2 #include <pybind11/numpy.h> 3 4 namespace py = pybind11; 5 6 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { 7 py::buffer_info buf1 = input1.request(), buf2 = input2.request(); 8 9 if (buf1.ndim != 1 || buf2.ndim != 1) 10 throw std::runtime_error("Number of dimensions must be one"); 11 12 if (buf1.size != buf2.size) 13 throw std::runtime_error("Input shapes must match"); 14 15 /* No pointer is passed, so NumPy will allocate the buffer */ 16 auto result = py::array_t<double>(buf1.size); 17 18 py::buffer_info buf3 = result.request(); 19 20 double *ptr1 = (double *) buf1.ptr, 21 *ptr2 = (double *) buf2.ptr, 22 *ptr3 = (double *) buf3.ptr; 23 24 for (size_t idx = 0; idx < buf1.shape[0]; idx++) 25 ptr3[idx] = ptr1[idx] + ptr2[idx]; 26 27 return result; 28 } 29 30 PYBIND11_MODULE(test, m) { 31 m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); 32 }
array_t裏的buf就是一個兼容的接口.
buf中能夠獲得指針和對應數字的維度信息.
爲了方便咱們甚至可使用Eigen看成咱們兼容numpy的接口:
1 #include <pybind11/pybind11.h> 2 #include <pybind11/eigen.h> 3 4 #include <Eigen/LU> 5 6 // N.B. this would equally work with Eigen-types that are not predefined. For example replacing 7 // all occurrences of "Eigen::MatrixXd" with "MatD", with the following definition: 8 // 9 // typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> MatD; 10 11 Eigen::MatrixXd inv(const Eigen::MatrixXd &xs) 12 { 13 return xs.inverse(); 14 } 15 16 double det(const Eigen::MatrixXd &xs) 17 { 18 return xs.determinant(); 19 } 20 21 namespace py = pybind11; 22 23 PYBIND11_MODULE(example,m) 24 { 25 m.doc() = "pybind11 example plugin"; 26 27 m.def("inv", &inv); 28 29 m.def("det", &det); 30 }
更多參考: