V8 下的垃圾回收機制

V8 實現了準確式 GC,GC 算法採用了分代式垃圾回收機制。所以,V8 將內存(堆)分爲新生代和老生代兩部分。算法

新生代算法

新生代中的對象通常存活時間較短,使用 Scavenge GC 算法。
在新生代空間中,內存空間分爲兩部分,分別爲 From 空間和 To 空間。在這兩個空間中,一定有一個空間是使用的,另外一個空間是空閒的。新分配的對象會被放入 From 空間中,當 From 空間被佔滿時,新生代 GC 就會啓動了。算法會檢查 From 空間中存活的對象並複製到 To 空間中,若是有失活的對象就會銷燬。當複製完成後將 From 空間和 To 空間互換,這樣 GC 就結束了。併發

老生代算法

老生代中的對象通常存活時間較長且數量也多,使用了兩個算法,分別是標記清除算法和標記壓縮算法。
在講算法前,先來講下什麼狀況下對象會出如今老生代空間中:
新生代中的對象是否已經經歷過一次 Scavenge 算法,若是經歷過的話,會將對象重新生代空間移到老生代空間中。
To 空間的對象佔比大小超過 25 %。在這種狀況下,爲了避免影響到內存分配,會將對象重新生代空間移到老生代空間中。
老生代中的空間很複雜,有以下幾個空間性能

enum AllocationSpace {
  // TODO(v8:7464): Actually map this space's memory as read-only.
  RO_SPACE,    // 不變的對象空間
  NEW_SPACE,   // 新生代用於 GC 複製算法的空間
  OLD_SPACE,   // 老生代常駐對象空間
  CODE_SPACE,  // 老生代代碼對象空間
  MAP_SPACE,   // 老生代 map 對象
  LO_SPACE,    // 老生代大空間對象
  NEW_LO_SPACE,  // 新生代大空間對象

  FIRST_SPACE = RO_SPACE,
  LAST_SPACE = NEW_LO_SPACE,
  FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE,
  LAST_GROWABLE_PAGED_SPACE = MAP_SPACE
};

在老生代中,如下狀況會先啓動標記清除算法:this

  • 某一個空間沒有分塊的時候
  • 空間中被對象超過必定限制
  • 空間不能保證新生代中的對象移動到老生代中 在這個階段中,會遍歷堆中全部的對象,而後標記活的對象,在標記完成後,銷燬全部沒有被標記的對象。在標記大型對內存時,可能須要幾百毫秒才能完成一次標記。這就會致使一些性能上的問題。爲了解決這個問題,2011 年,V8 從 stop-the-world 標記切換到增量標誌。在增量標記期間,GC 將標記工做分解爲更小的模塊,可讓 JS 應用邏輯在模塊間隙執行一會,從而不至於讓應用出現停頓狀況。但在 2018 年,GC 技術又有了一個重大突破,這項技術名爲併發標記。該技術可讓 GC 掃描和標記對象時,同時容許 JS 運行,你能夠點擊 該博客 詳細閱讀。 清除對象後會形成堆內存出現碎片的狀況,當碎片超過必定限制後會啓動壓縮算法。在壓縮過程當中,將活的對象像一端移動,直到全部對象都移動完成而後清理掉不須要的內存。
相關文章
相關標籤/搜索