Java併發核心淺談(二)

回顧

在上一篇 Java併發核心淺談 咱們大概瞭解到了Locksynchronized的共同點,再簡單總結下:java

  • Lock主要是自定義一個 counter,從而利用CAS對其實現原子操做,而synchronizedc++ hotspot實現的 monitor(具體的咱也沒看,咱就不說)
  • 兩者均可重入(遞歸,互調,循環),其本質都是維護一個可計數的 counter,在其它線程訪問加鎖對象時會判斷 counter 是否爲 0
  • 理論上講兩者都是阻塞式的,由於線程在拿鎖時,若是拿不到,最終的結果只能等待(前提是線程的最終目的就是要獲取鎖)讀寫鎖分離成兩把鎖了,因此不同

舉個例子:線程 A 持有了某個對象的 monitor,其它線程在訪問該對象時,發現 monitor 不爲 0,因此只能阻塞掛起或者加入等待隊列,等着線程 A 處理完退出後將 monitor 置爲 0。在線程 A 處理任務期間,其它線程要麼循環訪問 monitor,要麼一直阻塞等着線程 A 喚醒,再不濟就真的如我所說,放棄鎖的競爭,去處理別的任務。可是應該作不到去處理別的任務後,任務處理到一半,被線程 A 通知後再回去搶鎖node

公平鎖與非公平鎖

不共享 counterc++

// 非公平鎖在第一次拿鎖失敗也會調用該方法
        public final void acquire(int arg) {
        // 沒拿到鎖就加入隊列
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
        }
        
        // 非公平鎖方法
        final void lock() {
            // 走來就嘗試獲取鎖
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1); // 上面那個方法
        }
        
        // 公平鎖 Acquire 計數
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            // 拿到計數
            int c = getState();
            if (c == 0) {
                // 公平鎖會先嚐試排隊 非公平鎖少個 !hasQueuedPredecessors() 其它代碼同樣
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)  // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
        
        /** * @return {@code true} if there is a queued thread preceding the // 當前線程前有線程等待,則排隊 * current thread, and {@code false} if the current thread * is at the head of the queue or the queue is empty // 隊列爲空不用排隊 * @since 1.7 */
        public final boolean hasQueuedPredecessors() {
            // The correctness of this depends on head being initialized
            // before tail and on head.next being accurate if the current
            // thread is first in queue.
            Node t = tail; // Read fields in reverse initialization order
            Node h = head;
            Node s;
            // 當前線程處於頭節點的下一個且不爲空則不用排隊
            // 或該線程就是當前持有鎖的線程,即重入鎖,也不用排隊
            return h != t &&
                ((s = h.next) == null || s.thread != Thread.currentThread());
        }
        
        // 加入等待隊列
        final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                // 獲取失敗會檢查節點狀態
                // 而後 park 線程
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    
        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1; // 線程取消加鎖
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;  // 解除線程 park
        /** waitStatus value to indicate thread is waiting on condition */ // 
        static final int CONDITION = -2; // 線程被阻塞
        /** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */
        static final int PROPAGATE = -3; // 廣播
        
        // 官方註釋
        /** * Status field, taking on only the values: * SIGNAL: The successor of this node is (or will soon be) * blocked (via park), so the current node must * unpark its successor when it releases or * cancels. To avoid races, acquire methods must * first indicate they need a signal, * then retry the atomic acquire, and then, * on failure, block. * CANCELLED: This node is cancelled due to timeout or interrupt. * Nodes never leave this state. In particular, * a thread with cancelled node never again blocks. * CONDITION: This node is currently on a condition queue. * It will not be used as a sync queue node * until transferred, at which time the status * will be set to 0. (Use of this value here has * nothing to do with the other uses of the * field, but simplifies mechanics.) * PROPAGATE: A releaseShared should be propagated to other * nodes. This is set (for head node only) in * doReleaseShared to ensure propagation * continues, even if other operations have * since intervened. * 0: None of the above * * The values are arranged numerically to simplify use. * Non-negative values mean that a node doesn't need to * signal. So, most code doesn't need to check for particular * values, just for sign. * * The field is initialized to 0 for normal sync nodes, and * CONDITION for condition nodes. It is modified using CAS * (or when possible, unconditional volatile writes). */
        volatile int waitStatus;
複製代碼

讀鎖與寫鎖(共享鎖與排他鎖)

讀鎖:共享 counter緩存

寫鎖:不共享 counter併發

// 讀寫鎖和線程池的相似之處
        // 高 16 位爲讀計數,低 16 位爲寫計數
        static final int SHARED_SHIFT   = 16;
        static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
        static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
        static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

        /** Returns the number of shared holds represented in count. */ // 獲取讀計數
        static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
        /** Returns the number of exclusive holds represented in count. */ // 獲取寫計數
        static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
        
        /** * A counter for per-thread read hold counts. 每一個線程本身的讀計數 * Maintained as a ThreadLocal; cached in cachedHoldCounter. */
        static final class HoldCounter {
            int count;          // initially 0
            // Use id, not reference, to avoid garbage retention
            final long tid = LockSupport.getThreadId(Thread.currentThread()); // 線程 id
        }
        
    // 嘗試獲取讀鎖
    protected final int tryAcquireShared(int unused) {
            // ReentrantReadWriteLock ReadLock 讀鎖
            /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */
            Thread current = Thread.currentThread();
            int c = getState();
            // 若是寫鎖計數不爲零,且當前線程不是寫鎖持有線程,則能夠得到讀鎖
            // 言外之意,得到寫鎖的線程不能夠再得到讀鎖
            // 我的認爲不用判斷寫計數也行
            if (exclusiveCount(c) != 0 &&
                getExclusiveOwnerThread() != current)
                return -1;
            // 得到讀計數
            int r = sharedCount(c);
            // 檢查等待隊列 讀計數上限
            if (!readerShouldBlock() &&
                r < MAX_COUNT &&
                // 在高 16 位更新
                compareAndSetState(c, c + SHARED_UNIT)) {
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null ||
                        rh.tid != LockSupport.getThreadId(current))
                        // cachedHoldCounter 每一個線程本身的讀計數,非共享。可是鎖計數與其它讀操做共享,不與寫操做共享
                        // readHolds 爲ThreadLocalHoldCounter,繼承於 ThreadLocal,存 cachedHoldCounter
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return 1;
            }
            // 說明在排隊中,就一直遍歷,直到隊首,實際起做用的代碼和上面代碼差很少
            // 大師本人也說了代碼有冗餘
             /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */
            return fullTryAcquireShared(current);
        }
        
    // 得到寫鎖 
    protected final boolean tryAcquire(int acquires) {
            /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 讀鎖不爲零(讀鎖排除寫鎖,可是與讀鎖共享) * 寫鎖不爲零且鎖持有者不爲當前線程,則得到鎖失敗 * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) // 計數器已達最大值,得到鎖失敗 * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. // 重入是能夠的;隊列策略也是能夠的,會在下面解釋 */
            Thread current = Thread.currentThread();
            int c = getState();
            // 得到寫計數
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                // 檢查所持有線程
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                // 檢查最大計數
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire 線程重入得到鎖,直接更新計數
                setState(c + acquires);
                return true;
            }
            // 隊列策略
            // state 爲 0,檢查是否須要排隊
            // 針對公平鎖:去排隊,若是當前線程在隊首或等待隊列爲空,則返回 false,天然會走後面的 CAS
            // 不然就返回 true,則進入 return false;
            // 針對非公平鎖:寫死爲 false,直接 CAS
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
            // 設置當前寫鎖持有線程
            setExclusiveOwnerThread(current);
            return true;
        }    
    
    // 由於讀鎖是多個線程共享讀計數,各自維護了本身的讀計數,因此釋放的時候比寫鎖釋放要多些操做
     protected final boolean tryReleaseShared(int unused) {
            Thread current = Thread.currentThread();
            // 當前線程是第一讀線程的操做
            // firstReader 做爲字段緩存,是考慮到第一次讀的線程使用率高?
            if (firstReader == current) {
                // assert firstReaderHoldCount > 0;
                if (firstReaderHoldCount == 1)
                    firstReader = null;
                else
                    firstReaderHoldCount--;
            } else {
                HoldCounter rh = cachedHoldCounter;
                if (rh == null ||
                    rh.tid != LockSupport.getThreadId(current))
                    rh = readHolds.get();
                int count = rh.count;
                if (count <= 1) {
                    readHolds.remove();
                    if (count <= 0)
                        throw unmatchedUnlockException();
                }
                --rh.count;
            }
            for (;;) {
                int c = getState();
                int nextc = c - SHARED_UNIT;
                if (compareAndSetState(c, nextc))
                    // Releasing the read lock has no effect on readers,
                    // but it may allow waiting writers to proceed if
                    // both read and write locks are now free.
                    return nextc == 0;
            }
        }
複製代碼

總結一下

公平鎖和非公平鎖的「鎖」實現是基於CAS,公平性基於內部維護的Node鏈表app

讀寫鎖,能夠粗略的理解爲讀和寫兩種狀態,因此這兒的設計相似線程池的狀態。只不過,讀計數是能夠多個讀線程是共享的(排除寫鎖),每一個讀的線程都會維護本身的讀計數。寫鎖的話,獨佔寫計數,排除一切其餘線程。oop

相關文章
相關標籤/搜索