在上一篇 Java併發核心淺談 咱們大概瞭解到了Lock
和synchronized
的共同點,再簡單總結下:java
Lock
主要是自定義一個 counter,從而利用CAS
對其實現原子操做,而synchronized
是c++ hotspot
實現的 monitor(具體的咱也沒看,咱就不說)舉個例子:線程 A 持有了某個對象的 monitor,其它線程在訪問該對象時,發現 monitor 不爲 0,因此只能阻塞掛起或者加入等待隊列,等着線程 A 處理完退出後將 monitor 置爲 0。在線程 A 處理任務期間,其它線程要麼循環訪問 monitor,要麼一直阻塞等着線程 A 喚醒,再不濟就真的如我所說,放棄鎖的競爭,去處理別的任務。可是應該作不到去處理別的任務後,任務處理到一半,被線程 A 通知後再回去搶鎖node
不共享 counterc++
// 非公平鎖在第一次拿鎖失敗也會調用該方法
public final void acquire(int arg) {
// 沒拿到鎖就加入隊列
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
// 非公平鎖方法
final void lock() {
// 走來就嘗試獲取鎖
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1); // 上面那個方法
}
// 公平鎖 Acquire 計數
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
// 拿到計數
int c = getState();
if (c == 0) {
// 公平鎖會先嚐試排隊 非公平鎖少個 !hasQueuedPredecessors() 其它代碼同樣
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
/** * @return {@code true} if there is a queued thread preceding the // 當前線程前有線程等待,則排隊 * current thread, and {@code false} if the current thread * is at the head of the queue or the queue is empty // 隊列爲空不用排隊 * @since 1.7 */
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
// 當前線程處於頭節點的下一個且不爲空則不用排隊
// 或該線程就是當前持有鎖的線程,即重入鎖,也不用排隊
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
// 加入等待隊列
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 獲取失敗會檢查節點狀態
// 而後 park 線程
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
/** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1; // 線程取消加鎖
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1; // 解除線程 park
/** waitStatus value to indicate thread is waiting on condition */ //
static final int CONDITION = -2; // 線程被阻塞
/** * waitStatus value to indicate the next acquireShared should * unconditionally propagate */
static final int PROPAGATE = -3; // 廣播
// 官方註釋
/** * Status field, taking on only the values: * SIGNAL: The successor of this node is (or will soon be) * blocked (via park), so the current node must * unpark its successor when it releases or * cancels. To avoid races, acquire methods must * first indicate they need a signal, * then retry the atomic acquire, and then, * on failure, block. * CANCELLED: This node is cancelled due to timeout or interrupt. * Nodes never leave this state. In particular, * a thread with cancelled node never again blocks. * CONDITION: This node is currently on a condition queue. * It will not be used as a sync queue node * until transferred, at which time the status * will be set to 0. (Use of this value here has * nothing to do with the other uses of the * field, but simplifies mechanics.) * PROPAGATE: A releaseShared should be propagated to other * nodes. This is set (for head node only) in * doReleaseShared to ensure propagation * continues, even if other operations have * since intervened. * 0: None of the above * * The values are arranged numerically to simplify use. * Non-negative values mean that a node doesn't need to * signal. So, most code doesn't need to check for particular * values, just for sign. * * The field is initialized to 0 for normal sync nodes, and * CONDITION for condition nodes. It is modified using CAS * (or when possible, unconditional volatile writes). */
volatile int waitStatus;
複製代碼
讀鎖:共享 counter緩存
寫鎖:不共享 counter併發
// 讀寫鎖和線程池的相似之處
// 高 16 位爲讀計數,低 16 位爲寫計數
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
/** Returns the number of shared holds represented in count. */ // 獲取讀計數
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
/** Returns the number of exclusive holds represented in count. */ // 獲取寫計數
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
/** * A counter for per-thread read hold counts. 每一個線程本身的讀計數 * Maintained as a ThreadLocal; cached in cachedHoldCounter. */
static final class HoldCounter {
int count; // initially 0
// Use id, not reference, to avoid garbage retention
final long tid = LockSupport.getThreadId(Thread.currentThread()); // 線程 id
}
// 嘗試獲取讀鎖
protected final int tryAcquireShared(int unused) {
// ReentrantReadWriteLock ReadLock 讀鎖
/* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */
Thread current = Thread.currentThread();
int c = getState();
// 若是寫鎖計數不爲零,且當前線程不是寫鎖持有線程,則能夠得到讀鎖
// 言外之意,得到寫鎖的線程不能夠再得到讀鎖
// 我的認爲不用判斷寫計數也行
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
// 得到讀計數
int r = sharedCount(c);
// 檢查等待隊列 讀計數上限
if (!readerShouldBlock() &&
r < MAX_COUNT &&
// 在高 16 位更新
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null ||
rh.tid != LockSupport.getThreadId(current))
// cachedHoldCounter 每一個線程本身的讀計數,非共享。可是鎖計數與其它讀操做共享,不與寫操做共享
// readHolds 爲ThreadLocalHoldCounter,繼承於 ThreadLocal,存 cachedHoldCounter
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
// 說明在排隊中,就一直遍歷,直到隊首,實際起做用的代碼和上面代碼差很少
// 大師本人也說了代碼有冗餘
/* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */
return fullTryAcquireShared(current);
}
// 得到寫鎖
protected final boolean tryAcquire(int acquires) {
/* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 讀鎖不爲零(讀鎖排除寫鎖,可是與讀鎖共享) * 寫鎖不爲零且鎖持有者不爲當前線程,則得到鎖失敗 * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) // 計數器已達最大值,得到鎖失敗 * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. // 重入是能夠的;隊列策略也是能夠的,會在下面解釋 */
Thread current = Thread.currentThread();
int c = getState();
// 得到寫計數
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
// 檢查所持有線程
if (w == 0 || current != getExclusiveOwnerThread())
return false;
// 檢查最大計數
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire 線程重入得到鎖,直接更新計數
setState(c + acquires);
return true;
}
// 隊列策略
// state 爲 0,檢查是否須要排隊
// 針對公平鎖:去排隊,若是當前線程在隊首或等待隊列爲空,則返回 false,天然會走後面的 CAS
// 不然就返回 true,則進入 return false;
// 針對非公平鎖:寫死爲 false,直接 CAS
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
// 設置當前寫鎖持有線程
setExclusiveOwnerThread(current);
return true;
}
// 由於讀鎖是多個線程共享讀計數,各自維護了本身的讀計數,因此釋放的時候比寫鎖釋放要多些操做
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
// 當前線程是第一讀線程的操做
// firstReader 做爲字段緩存,是考慮到第一次讀的線程使用率高?
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null ||
rh.tid != LockSupport.getThreadId(current))
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}
複製代碼
公平鎖和非公平鎖的「鎖」實現是基於CAS
,公平性基於內部維護的Node
鏈表app
讀寫鎖,能夠粗略的理解爲讀和寫兩種狀態,因此這兒的設計相似線程池的狀態。只不過,讀計數是能夠多個讀線程是共享的(排除寫鎖),每一個讀的線程都會維護本身的讀計數。寫鎖的話,獨佔寫計數,排除一切其餘線程。oop