caffe2 環境的搭建以及detectron的配置

caffe2 環境的搭建以及detectron的配置

建議你們看一下這篇博客https://tech.amikelive.com/node-706/comprehensive-guide-installing-caffe2-with-gpu-support-by-building-from-source-on-ubuntu-16-04/?tdsourcetag=s_pctim_aiomsg,是屬於比較新的博客,由於caffe2已經合併到pytorch了,因此某些內容已經並不適用了.html

環境的安裝

  • 安裝cuda9.0
  • 安裝cudnn7.0

按照官網的源碼安裝說明進行安裝caffe2

https://caffe2.ai/docs/getting-started.html?platform=ubuntu&configuration=compilenode

使用anaconda3, python2.7python

  • 安裝須要的庫
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
      build-essential \
      cmake \
      git \
      libgoogle-glog-dev \
      libgtest-dev \
      libiomp-dev \
      libleveldb-dev \
      liblmdb-dev \
      libopencv-dev \
      libopenmpi-dev \
      libsnappy-dev \
      libprotobuf-dev \
      openmpi-bin \
      openmpi-doc \
      protobuf-compiler \
      python-dev \
      python-pip                          
sudo pip install \
      future \
      numpy \
      protobuf
  • libgflags2根據系統選擇
# 對於 Ubuntu 14.04
sudo apt-get install -y --no-install-recommends libgflags2
# 對於 Ubuntu 16.04
sudo apt-get install -y --no-install-recommends libgflags-dev
  • 下載
git clone --recursive https://github.com/caffe2/caffe2.git && cd caffe2
make && cd build && sudo make install
  • 測試

測試caffe2是否安裝成功git

cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"

若是是failure,試着cd到caffe2/build的文件夾裏,而後執行github

python -c 'from caffe2.python import core' 2>/dev/null

若是successful,說明是環境變量的設置問題,若是仍是失敗,則會有具體的提示。shell

配置環境變量,編輯~/.bashrcubuntu

sudo gedit ~/.bashrcbash

添加如下內容:app

export PYTHONPATH=/usr/local:PYTHONPATH
export PYTHONPATH=PYTHONPATH:/home/....../caffe2/build  (後面路徑爲caffe2的編譯路徑,在caffe2/build中,命令行輸入pwd能夠獲得這個路徑)
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

安裝detectron

官方說明文檔:https://github.com/facebookresearch/Detectron/blob/master/INSTALL.mdless

下載下來文件:

git clone https://github.com/facebookresearch/detectron

編譯python庫 cd DETECTRON/lib && make (DETECTRON表示你clone下來的文件夾) 測試是否編譯成功 python2 $DETECTRON/tests/test_spatial_narrow_as_op.py (DETECTRON表示你clone下來的文件夾)

detectron 使用測試

說明文檔:https://github.com/facebookresearch/Detectron/blob/master/GETTING_STARTED.md

根據不一樣的需求,對象檢測能夠分爲幾種,1)Bounding box,2)Mask,3)KeyPoints

這裏給出兩個例子,用mask和

python2 tools/infer_simple.py \
    --cfg configs/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml \
    --output-dir /tmp/detectron-visualizations \
    --image-ext jpg \
    --wts https://s3-us-west-2.amazonaws.com/detectron/35861858/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml.02_32_51.SgT4y1cO/output/train/coco_2014_train:coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
    demo
python2 tools/infer_simple.py \
    --cfg configs/12_2017_baselines/e2e_keypoint_rcnn_R-101-FPN_s1x.yaml \
    --output-dir /tmp/detectron-visualizations \
    --image-ext jpg \
    --wts https://s3-us-west-2.amazonaws.com/detectron/37698009/12_2017_baselines/e2e_keypoint_rcnn_R-101-FPN_s1x.yaml.08_45_57.YkrJgP6O/output/train/keypoints_coco_2014_train%3Akeypoints_coco_2014_valminusminival/generalized_rcnn/model_final.pkl \
    demo

Reference

https://blog.csdn.net/Yan_Joy/article/details/70241319

https://blog.csdn.net/xiangxianghehe/article/details/70171342

https://blog.csdn.net/meccaendless/article/details/79300528

相關文章
相關標籤/搜索