Windows內核分析索引目錄:https://www.cnblogs.com/onetrainee/p/11675224.htmlhtml
用戶異常與模擬異常的派發app
1、KiDispatchException函數處理流程圖函數
不管用戶模擬異常仍是CPU異常,通過前面分析,在通過記錄以後,最終都會通過KiDispatchException這個派發函數中。ui
在KiDispatchException中會對CPU異常和用戶異常分別進行處理。this
CPU異常:首先調用內核調試器,若是調用失敗則調用RtlDispatchException(該函數後面會有介紹)分發,spa
RtlDispatchException函數會檢查SEH鏈中是否有該程序的處理函數,若是有則返回成功,debug
若RtlDispatchException函數處理異常失敗,其會嘗試第二次調用內核調試器進行調試處理,若是最終處理不了直接藍屏。指針
用戶異常:先嚐試內核調試器,再嘗試用戶調試器,若是還不行,直接返回用戶代碼嘗試使用try_catch_語法來進行處理,以後還不行再嘗試兩次用戶調試器。調試
若是最終仍是處理不了異常,該進程會關閉並報出錯誤。(用戶異常不會致使藍屏出現)rest
2、RtlDispatchException的函數解析代碼
1 VOID 2 KiDispatchException ( 3 IN PEXCEPTION_RECORD ExceptionRecord, 4 IN PKEXCEPTION_FRAME ExceptionFrame, 5 IN PKTRAP_FRAME TrapFrame, 6 IN KPROCESSOR_MODE PreviousMode, 7 IN BOOLEAN FirstChance 8 ) 9 10 /*++ 11 12 Routine Description: 13 14 This function is called to dispatch an exception to the proper mode and 15 to cause the exception dispatcher to be called. If the previous mode is 16 kernel, then the exception dispatcher is called directly to process the 17 exception. Otherwise the exception record, exception frame, and trap 18 frame contents are copied to the user mode stack. The contents of the 19 exception frame and trap are then modified such that when control is 20 returned, execution will commense in user mode in a routine which will 21 call the exception dispatcher. 22 23 Arguments: 24 25 ExceptionRecord - Supplies a pointer to an exception record. 26 27 ExceptionFrame - Supplies a pointer to an exception frame. For NT386, 28 this should be NULL. 29 30 TrapFrame - Supplies a pointer to a trap frame. 31 32 PreviousMode - Supplies the previous processor mode. 33 34 FirstChance - Supplies a boolean value that specifies whether this is 35 the first (TRUE) or second (FALSE) chance for the exception. 36 37 Return Value: 38 39 None. 40 41 --*/ 42 43 { 44 CONTEXT ContextFrame; 45 EXCEPTION_RECORD ExceptionRecord1, ExceptionRecord2; 46 LONG Length; 47 ULONG UserStack1; 48 ULONG UserStack2; 49 50 // 51 // Move machine state from trap and exception frames to a context frame, 52 // and increment the number of exceptions dispatched. 53 // 54 55 //-------------------------------------// 56 // 將當前異常分發次數增長1 // 57 // 修改ContextFrame.ContextFlags標誌位 // 58 //-------------------------------------// 59 KeGetCurrentPrcb()->KeExceptionDispatchCount += 1; 60 ContextFrame.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS; 61 62 //------------------------------------------// 63 // 對於用戶模式異常的處理 or 調試器能夠執行 // 64 // 標記好Context內容 // 65 //------------------------------------------// 66 if ((PreviousMode == UserMode) || KdDebuggerEnabled) { 67 // 68 // For usermode exceptions always try to dispatch the floating 69 // point state. This allows exception handlers & debuggers to 70 // examine/edit the npx context if required. Plus it allows 71 // exception handlers to use fp instructions without destroying 72 // the npx state at the time of the exception. 73 // 74 // Note: If there's no 80387, ContextTo/FromKFrames will use the 75 // emulator's current state. If the emulator can not give the 76 // current state, then the context_floating_point bit will be 77 // turned off by ContextFromKFrames. 78 // 79 80 ContextFrame.ContextFlags |= CONTEXT_FLOATING_POINT; 81 if (KeI386XMMIPresent) { 82 ContextFrame.ContextFlags |= CONTEXT_EXTENDED_REGISTERS; 83 } 84 } 85 86 //----------------------------------// 87 // 將TrapFrame轉換爲ContextFrame // 88 // 接下來都是處理ContextFrame的內容 // 89 // 這部分零環無心義,三環有意義 // 90 // 不然修改返回地址不行了。 // 91 //----------------------------------// 92 KeContextFromKframes(TrapFrame, ExceptionFrame, &ContextFrame); 93 94 // 95 // if it is BREAK_POINT exception, we subtract 1 from EIP and report 96 // the updated EIP to user. This is because Cruiser requires EIP 97 // points to the int 3 instruction (not the instruction following int 3). 98 // In this case, BreakPoint exception is fatal. Otherwise we will step 99 // on the int 3 over and over again, if user does not handle it 100 // 101 // if the BREAK_POINT occured in V86 mode, the debugger running in the 102 // VDM will expect CS:EIP to point after the exception (the way the 103 // processor left it. this is also true for protected mode dos 104 // app debuggers. We will need a way to detect this. 105 // 106 // 107 108 switch (ExceptionRecord->ExceptionCode) { 109 //-------------------------// 110 // 若是爲int3斷點異常 // 111 // 則修改eip執行原來的位置 // 112 //-------------------------// 113 case STATUS_BREAKPOINT: 114 ContextFrame.Eip--; 115 break; 116 117 //------------------------------// 118 // 執行權限問題而發生的訪問違例 // 119 //------------------------------// 120 case KI_EXCEPTION_ACCESS_VIOLATION: 121 ExceptionRecord->ExceptionCode = STATUS_ACCESS_VIOLATION; 122 if (PreviousMode == UserMode) { 123 if (KiCheckForAtlThunk(ExceptionRecord,&ContextFrame) != FALSE) { 124 goto Handled1; 125 } 126 127 if ((SharedUserData->ProcessorFeatures[PF_NX_ENABLED] == TRUE) && 128 (ExceptionRecord->ExceptionInformation [0] == EXCEPTION_EXECUTE_FAULT)) { 129 130 if (((KeFeatureBits & KF_GLOBAL_32BIT_EXECUTE) != 0) || 131 (PsGetCurrentProcess()->Pcb.Flags.ExecuteEnable != 0) || 132 (((KeFeatureBits & KF_GLOBAL_32BIT_NOEXECUTE) == 0) && 133 (PsGetCurrentProcess()->Pcb.Flags.ExecuteDisable == 0))) { 134 ExceptionRecord->ExceptionInformation [0] = 0; 135 } 136 } 137 } 138 break; 139 } 140 141 // 142 // Select the method of handling the exception based on the previous mode. 143 // 144 145 ASSERT (( 146 !((PreviousMode == KernelMode) && 147 (ContextFrame.EFlags & EFLAGS_V86_MASK)) 148 )); 149 150 //--------------------------// 151 // 若是是內核模式觸發的異常 // 152 //--------------------------// 153 if (PreviousMode == KernelMode) { 154 155 // 156 // Previous mode was kernel. 157 // 158 // If the kernel debugger is active, then give the kernel debugger the 159 // first chance to handle the exception. If the kernel debugger handles 160 // the exception, then continue execution. Else attempt to dispatch the 161 // exception to a frame based handler. If a frame based handler handles 162 // the exception, then continue execution. 163 // 164 // If a frame based handler does not handle the exception, 165 // give the kernel debugger a second chance, if it's present. 166 // 167 // If the exception is still unhandled, call KeBugCheck(). 168 // 169 170 //----------------------------------// 171 // 給內核調試器第一次機會來處理異常 // 172 //----------------------------------// 173 if (FirstChance == TRUE) { 174 175 if ((KiDebugRoutine != NULL) && 176 (((KiDebugRoutine) (TrapFrame, 177 ExceptionFrame, 178 ExceptionRecord, 179 &ContextFrame, 180 PreviousMode, 181 FALSE)) != FALSE)) { 182 183 //------------------------------// 184 // 若是處理成功,不進行下面處理 // 185 //------------------------------// 186 goto Handled1; 187 } 188 189 // Kernel debugger didn't handle exception. 190 191 //--------------------------------------// 192 // 若是第一次調試器不成功,則派發異常 // 193 // 當派發成功以後,也不會處理第二次異常 // 194 //--------------------------------------// 195 if (RtlDispatchException(ExceptionRecord, &ContextFrame) == TRUE) { 196 goto Handled1; 197 } 198 } 199 200 // 201 // This is the second chance to handle the exception. 202 // 203 204 //--------------------------------// 205 // 第二次機會來調用調試器處理異常 // 206 //--------------------------------// 207 if ((KiDebugRoutine != NULL) && 208 (((KiDebugRoutine) (TrapFrame, 209 ExceptionFrame, 210 ExceptionRecord, 211 &ContextFrame, 212 PreviousMode, 213 TRUE)) != FALSE)) { 214 215 //------------------// 216 // 第二次也處理成功 // 217 //------------------// 218 goto Handled1; 219 } 220 221 222 //------------------------------------------------// 223 // 若是兩次調試器處理和派發都不成功,系統直接藍屏 // 224 //------------------------------------------------// 225 KeBugCheckEx( 226 KERNEL_MODE_EXCEPTION_NOT_HANDLED, 227 ExceptionRecord->ExceptionCode, 228 (ULONG)ExceptionRecord->ExceptionAddress, 229 (ULONG)TrapFrame, 230 0); 231 232 } else { 233 //--------------// 234 // 用戶模式異常 // 235 //--------------// 236 237 // 238 // Previous mode was user. 239 // 240 // If this is the first chance and the current process has a debugger 241 // port, then send a message to the debugger port and wait for a reply. 242 // If the debugger handles the exception, then continue execution. Else 243 // transfer the exception information to the user stack, transition to 244 // user mode, and attempt to dispatch the exception to a frame based 245 // handler. If a frame based handler handles the exception, then continue 246 // execution with the continue system service. Else execute the 247 // NtRaiseException system service with FirstChance == FALSE, which 248 // will call this routine a second time to process the exception. 249 // 250 // If this is the second chance and the current process has a debugger 251 // port, then send a message to the debugger port and wait for a reply. 252 // If the debugger handles the exception, then continue execution. Else 253 // if the current process has a subsystem port, then send a message to 254 // the subsystem port and wait for a reply. If the subsystem handles the 255 // exception, then continue execution. Else terminate the process. 256 // 257 258 259 if (FirstChance == TRUE) { 260 261 // 262 // This is the first chance to handle the exception. 263 // 264 265 //-------------------------------------------------------------------------------// 266 // 調用內核調試器有兩個條件: // 267 // 1. 當前存在一個調試器 // 268 // 2. (當前進程的調試器端口爲NULL && 不忽略異常) or 能夠獲得當前 ContextFrame ) // 269 //-------------------------------------------------------------------------------// 270 if ((KiDebugRoutine != NULL) && 271 272 //---------------------------------------------------------------// 273 // 三環調試器最終會創建一個調試對象,掛在被調試進程的DebugPort處 // 274 //---------------------------------------------------------------// 275 ((PsGetCurrentProcess()->DebugPort == NULL && 276 !KdIgnoreUmExceptions) || 277 //-------------------------------------// 278 // 判斷R3層的INT3是否能進入內核調試器 // 279 //-------------------------------------// 280 (KdIsThisAKdTrap(ExceptionRecord, &ContextFrame, UserMode)))) { 281 // 282 // Now dispatch the fault to the kernel debugger. 283 // 284 285 //------------------------// 286 // 先嚐試第一次調試器處理 // 287 //------------------------// 288 if ((((KiDebugRoutine) (TrapFrame, 289 ExceptionFrame, 290 ExceptionRecord, 291 &ContextFrame, 292 PreviousMode, 293 FALSE)) != FALSE)) { 294 295 goto Handled1; 296 } 297 } 298 299 300 //---------------------------------------------------// 301 // 若是零環調試器沒法處理 會調用三環調試器來進行處理 // 302 //---------------------------------------------------// 303 if (DbgkForwardException(ExceptionRecord, TRUE, FALSE)) { 304 goto Handled2; 305 } 306 307 // 308 // Transfer exception information to the user stack, transition 309 // to user mode, and attempt to dispatch the exception to a frame 310 // based handler. 311 312 ExceptionRecord1.ExceptionCode = 0; // satisfy no_opt compilation 313 314 //---------------------------------------------------------// 315 // 當內核調試器/用戶調試器都處理不了該異常時 // 316 // 返回R3層的用戶代碼,嘗試交給自定的try.catch. 來進行處理 // 317 // 對棧的存儲跟APC操做相似 // 318 //---------------------------------------------------------// 319 repeat: 320 try { 321 322 // 323 // If the SS segment is not 32 bit flat, there is no point 324 // to dispatch exception to frame based exception handler. 325 // 326 327 328 if (TrapFrame->HardwareSegSs != (KGDT_R3_DATA | RPL_MASK) || 329 TrapFrame->EFlags & EFLAGS_V86_MASK ) { 330 //-----------------------------------// 331 // 若是TrapFrame保存的不是用戶層地址 // 332 // 直接出觸發二次異常 // 333 //-----------------------------------// 334 ExceptionRecord2.ExceptionCode = STATUS_ACCESS_VIOLATION; 335 ExceptionRecord2.ExceptionFlags = 0; 336 ExceptionRecord2.NumberParameters = 0; 337 ExRaiseException(&ExceptionRecord2); 338 } 339 340 // 341 // Compute length of context record and new aligned user stack 342 // pointer. 343 // 344 345 //--------------------------------------// 346 // 計算"對齊並提升用戶棧的大小"後的指針 // 347 //--------------------------------------// 348 UserStack1 = (ContextFrame.Esp & ~CONTEXT_ROUND) - CONTEXT_ALIGNED_SIZE; 349 350 // 351 // Probe user stack area for writability and then transfer the 352 // context record to the user stack. 353 // 354 355 //--------------------------------------------------------------------// 356 // ProbeForWrite 檢測是否可寫入,若是能夠寫入則寫入內存,不然拋出異常 // 357 // 將Context結構保存到三環棧幀中,爲進入零環時恢復三環的環境作準備 // // 358 //--------------------------------------------------------------------// 359 ProbeForWrite((PCHAR)UserStack1, CONTEXT_ALIGNED_SIZE, CONTEXT_ALIGN); 360 RtlCopyMemory((PULONG)UserStack1, &ContextFrame, sizeof(CONTEXT)); 361 362 // 363 // Compute length of exception record and new aligned stack 364 // address. 365 // 366 367 //----------------------------// 368 // 計算放入異常參數後棧的大小 // 369 //----------------------------// 370 Length = (sizeof(EXCEPTION_RECORD) - (EXCEPTION_MAXIMUM_PARAMETERS - 371 ExceptionRecord->NumberParameters) * sizeof(ULONG) +3) & 372 (~3); 373 UserStack2 = UserStack1 - Length; 374 375 // 376 // Probe user stack area for writeability and then transfer the 377 // context record to the user stack area. 378 // N.B. The probing length is Length+8 because there are two 379 // arguments need to be pushed to user stack later. 380 // 381 382 //----------------------------------------------// 383 // 將參數放入內核中 這裏提高8由於後面還須要參數 // 384 //----------------------------------------------// 385 ProbeForWrite((PCHAR)(UserStack2 - 8), Length + 8, sizeof(ULONG)); 386 RtlCopyMemory((PULONG)UserStack2, ExceptionRecord, Length); 387 388 // 389 // Push address of exception record, context record to the 390 // user stack. They are the two parameters required by 391 // _KiUserExceptionDispatch. 392 // 393 394 //----------------------------------------------------------------------// 395 // 將上述兩個棧地址壓入棧中,將該參數是 _KiUserExceptionDispatch 須要的 // 396 //----------------------------------------------------------------------// 397 *(PULONG)(UserStack2 - sizeof(ULONG)) = UserStack1; 398 *(PULONG)(UserStack2 - 2*sizeof(ULONG)) = UserStack2; 399 400 // 401 // Set new stack pointer to the trap frame. 402 // 403 404 //-------------------------------------------// 405 // 修改_KTRAP_FRAME中寄存器ss與esp寄存器的值 // 406 // 這樣返回用戶層時棧幀就是修改棧幀的數據了 // 407 //-------------------------------------------// 408 KiSegSsToTrapFrame(TrapFrame, KGDT_R3_DATA); 409 KiEspToTrapFrame(TrapFrame, (UserStack2 - sizeof(ULONG)*2)); 410 411 // 412 // Force correct R3 selectors into TrapFrame. 413 // 414 415 //-------------------------// 416 // 修改 TrapFrame後的數據 // 417 //-------------------------// 418 TrapFrame->SegCs = SANITIZE_SEG(KGDT_R3_CODE, PreviousMode); 419 TrapFrame->SegDs = SANITIZE_SEG(KGDT_R3_DATA, PreviousMode); 420 TrapFrame->SegEs = SANITIZE_SEG(KGDT_R3_DATA, PreviousMode); 421 TrapFrame->SegFs = SANITIZE_SEG(KGDT_R3_TEB, PreviousMode); 422 TrapFrame->SegGs = 0; 423 424 // 425 // Set the address of the exception routine that will call the 426 // exception dispatcher and then return to the trap handler. 427 // The trap handler will restore the exception and trap frame 428 // context and continue execution in the routine that will 429 // call the exception dispatcher. 430 // 431 432 //--------------------------------------// 433 // 修改到返回三環的地址 // 434 // KeUserExceptionDispathcer 這個函數中 // 435 //--------------------------------------// 436 TrapFrame->Eip = (ULONG)KeUserExceptionDispatcher; 437 return; 438 439 } except (KiCopyInformation(&ExceptionRecord1, 440 (GetExceptionInformation())->ExceptionRecord)) { 441 442 // 443 // If the exception is a stack overflow, then attempt 444 // to raise the stack overflow exception. Otherwise, 445 // the user's stack is not accessible, or is misaligned, 446 // and second chance processing is performed. 447 // 448 449 if (ExceptionRecord1.ExceptionCode == STATUS_STACK_OVERFLOW) { 450 ExceptionRecord1.ExceptionAddress = ExceptionRecord->ExceptionAddress; 451 RtlCopyMemory((PVOID)ExceptionRecord, 452 &ExceptionRecord1, sizeof(EXCEPTION_RECORD)); 453 goto repeat; 454 } 455 } 456 } 457 458 // 459 // This is the second chance to handle the exception. 460 // 461 462 if (DbgkForwardException(ExceptionRecord, TRUE, TRUE)) { 463 goto Handled2; 464 } else if (DbgkForwardException(ExceptionRecord, FALSE, TRUE)) { 465 goto Handled2; 466 } else { 467 ZwTerminateProcess(NtCurrentProcess(), ExceptionRecord->ExceptionCode); 468 KeBugCheckEx( 469 KERNEL_MODE_EXCEPTION_NOT_HANDLED, 470 ExceptionRecord->ExceptionCode, 471 (ULONG)ExceptionRecord->ExceptionAddress, 472 (ULONG)TrapFrame, 473 0); 474 } 475 } 476 477 // 478 // Move machine state from context frame to trap and exception frames and 479 // then return to continue execution with the restored state. 480 // 481 482 Handled1: 483 484 KeContextToKframes(TrapFrame, ExceptionFrame, &ContextFrame, 485 ContextFrame.ContextFlags, PreviousMode); 486 487 // 488 // Exception was handled by the debugger or the associated subsystem 489 // and state was modified, if necessary, using the get state and set 490 // state capabilities. Therefore the context frame does not need to 491 // be transferred to the trap and exception frames. 492 // 493 494 Handled2: 495 return; 496 }