關於CLH大量使用到的Unsafe的CAS用法,頭兩個入參是this和xxOffset,翻了一下牛逼網友的給的代碼大概是處理一個內存對齊的問題,整個操做中涉及到offset(dest)有兩個部分java
mov edx, dest ..... cmpxchg dword ptr [edx], ecx ;ecx寄存器放置exchange_value
Unsafe不面向普通開發者,上來就檢查你的類加載器是否是null(native)node
先mark一下這句話,其中AbstractOwnableSynchronizer
就是保存有排斥用的Thread
成員數組
* You may also find the inherited methods from {@link * AbstractOwnableSynchronizer} useful to keep track of the thread * owning an exclusive synchronizer. You are encouraged to use them * -- this enables monitoring and diagnostic tools to assist users in * determining which threads hold locks.
A thread may try to acquire if it is first in the queue.(這是一個FIFO機制)併發
CLH鎖的入隊是原子性的(源碼中使用CAS(新的節點,tail)實現替換) Insertion into a CLH queue requires only a single atomic operation on "tail",且出隊也是原子性的,dequeuing involves only updating the "head",但還須要處理後繼 in part to deal with possible cancellation due to timeouts and interrupts,全部的信息都用volatile的waitStatus來表示,比方說取消(timeout or interrupt)是1,SIGNAL(當前的後繼須要喚醒,注意有特殊的要求, unpark its successor when it releases or cancels)爲-1,而-2 / -3 涉及到Condition的設計,這裏暫且保留說明app
鏈表設計中prev
用於處理取消操做(LAZY),next
用於處理阻塞操做,當須要wakeup時就沿着next來跑(其中有一點checking backwards from the atomically updated "tail" when a node's successor appears to be null的情形暫留-->UPD.問題後面說明了)less
nextWaiter
和next
有必定區別,前者是一個簡單的node,然後者是volatile,具體用途彷佛不止一種,有一種用法是判斷是否共享/獨佔nextWaiter == SHARED
工具
state
和status
又有啥區別啊(The synchronization state.好含糊啊,推測是可重入設計中的資源狀態(UPD.確實是個含糊的概念,這是要交由實現類來具體使用的))ui
CLH隊列有獨佔(null
)和共享(一個空的Node()
)兩種模式,分別爲ReentranceLock和Semaphore/CyclicBarrier等線程通訊工具提供實現基類this
CLH locks are normally used forspinlocksatom
A node is signalled when its predecessor releases.
enqueue操做是經過CAS來實現雙向鏈表的,詳見line583:enq
(好奇隊列爲空時設立head的操做,大概是一種lazy設計)
爲何unpark須要從後往前遍歷,須要看併發狀況下的原子性,當CAStail爲新的node時,原tail的next並不指向真正的tail,而prev保證了必然能遍歷到全部的node(再次給大佬跪了,懵逼了很久orz),UPD.還有一點是cancelAcquire時node.next=node
,此時若是有unpark的衝突會死掉,而prev是正常工做的
private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { // 恰好發生意外 新的tail.prev確定有了,但舊的tail.next仍是null t.next = node; return t; } } } } private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }
tryAcquire/tryRelease/tryAcquireShared/tryReleaseShared是要複寫的方法,JUC衍生的一批線程通訊工具就是靠這個
cancelAcquire(node)的操做也是比較費解啊
1.取消node的線程
2.獲取第一個waiteStatuse<=0的前驅pred,且把中間全部cancelled的節點所有置空,node.prev=pred
3.把node也給cancelled掉
4.node已經廢了,若是node原本是tail那還要把tail給CAS成pred,predNext爲空
5.若是pred是head,那就喚醒後繼(就是倒着跑的那個unparkSuccessor)
6.除此之外把pred的ws改成SIGNAL(合適的時候就喚醒 ,由於此時還不是頭的後繼就不須要這麼快喚醒)
7.廢棄的node.next=node(注意此時也是一條長長的死循環鏈表,內部所有Cancelled),用於快速GC
暫時就這麼多了,還有Node.EXCLUSIVE
的模式是怎麼用的我有空查查,好累哦
volatile int value
+ CASAtomicStampedReference
使用Pair
來維護一個reference
和stamp
UNSAFE.compareAndSwapObject
ThreadPoolExecutor
ctl
提供兩個信息,一個是workerCount
,另外一個是runState
,因爲使用了位壓縮因此線程數最多隻能到達(2^29)-1
,文檔中提到可能會換成AtomicLong,只是爲了快而使用普通整型大小runState
提供5種狀態,
RUNNING
: 接收且執行SHUTDOWN
: 不接收但執行隊列中任務STOP
: 不接收也不執行TIDYING
: 全部任務中斷,隊列爲0TERMINATED
: terminated()
完成HashSet<Worker> works
,其中Worker
繼承自AQS
awaitTermination
由Condition提供支持CountDownLatch
經過Sync繼承AQS實現tryAcquireShared
來實現共享鎖CyclicBarrier
相對複雜,使用了ReentranceLock
和Condition
來組合,主要是用於signalAllfinal ReentrantLock lock = this.lock;
這裏查閱的是ArrayBlockingQueue
很是保守的類,使用了Reentrance和Condition(notEmpty
|notFull
),任意操做幾乎都上鎖
Itrs
類做爲Iterator
的代理,內部的Node
是WeakReference
類型,提供弱一致性(這裏不是特別懂具體的操做。。)
put()
時lock
會lockInterruptibly()
,且會輪詢while (count == items.length) notFull.await();
take()
時同理,但後面是輪詢while (count == 0) notEmpty.await();
(話說內部的數組是循環數組啊)
感覺一下take的內部調用dequeue()
E x = (E) items[takeIndex]; items[takeIndex] = null; // effective Java中推薦的作法 if (++takeIndex == items.length) takeIndex = 0; count--; // 真正的個數 if (itrs != null) itrs.elementDequeued(); // itrs相關 notFull.signal(); return x;
state = 0 沒鎖, state != 0 上鎖 state > 1 進入可重入狀態 當state == 0時會執行setExclusiveOwnerThread
來釋放資源
是否公平交由Sync使用策略模式調度,比方說NonfairSync
就是非公平的調度,此時若是調用lock.lock()
其實就是sync.lock()
,默認下是NonfairSync
看看關鍵的地方
static final class NonfairSync extends Sync { private static final long serialVersionUID = 7316153563782823691L; /** * Performs lock. Try immediate barge, backing up to normal * acquire on failure. */ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } } /** * Sync object for fair locks */ static final class FairSync extends Sync { private static final long serialVersionUID = -3000897897090466540L; final void lock() { acquire(1); } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. */ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } }
lock()
:能夠看出公平調度是很是乖巧的交給AQS來得到資源,而非公平調度則是經過CAS來搶先得到,不行再給AQS
tryAcquire
:非公平經過CAS得到,而公平須要判斷是否hasQueuedPredecessors()
ReentrantReadWriteLock
實現ReadWriteLock
接口,區別在於readLock
的lock()
實際是委託給sync
的acquireShared(1)
,而WriteLock
是sync.acquire(1)