爲了防止一些多餘的判斷,我選擇直接記錄每一個數的個數,而後枚舉第一個數,找第一個數以外第二個數改變最少的狀況下應該選什麼node
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define enter putchar('\n') #define space putchar(' ') //#define ivorysi #define MAXN 100005 typedef long long int64; using namespace std; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,a[MAXN]; int L[MAXN],tot,ans,cnt1[MAXN],cnt2[MAXN],pre[MAXN],suf[MAXN]; void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) read(a[i]); for(int i = 1 ; i <= N ; i += 2) { cnt1[a[i]]++; } for(int i = 2 ; i <= N ; i += 2) { cnt2[a[i]]++; } for(int i = 1 ; i <= 100000 ; ++i) { pre[i] = max(pre[i - 1],cnt2[i]); } for(int i = 100000 ; i >= 1 ; --i) { suf[i] = max(suf[i + 1],cnt2[i]); } ans = N; for(int i = 1 ; i <= 100000 ; ++i) { ans = min(ans,N / 2 - cnt1[i] + N / 2 - max(pre[i - 1],suf[i + 1])); } out(ans);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); return 0; }
103真是構造題大薈萃
若是全部的\(X_i + Y_i\)奇偶性不一樣,那麼顯然不行c++
那麼咱們考慮一下全部\(X_i + Y_i\)爲奇數的狀況spa
咱們找一個集合\({1,2,4,8...2^k}\)他們的總和大於\(|X_i| + |Y_i|\)的最大值code
咱們證實一下\({1,2,4,8..2^k}\)這個集合能夠達到全部\(|X_i| + |Y_i| <= 2^{k +1} - 1\)的全部\(X_i +Y_i\)和爲奇數的點遞歸
首先集合中只有\(1\)的時候,咱們能夠達到get
集合中有\({1,2}\)的時候,咱們經過向上下左右移動\(2\),是能夠達到距離原點距離爲\(1\)的位置的it
這樣遞歸證實,最後就是對的class
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define enter putchar('\n') #define space putchar(' ') //#define ivorysi #define MAXN 100005 typedef long long int64; using namespace std; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N; int M = 0; int64 op[35],sum,X[1005],Y[1005]; int64 dx[] = {1,0,-1,0},dy[] = {0,-1,0,1}; char s[1005][45]; const char *dir = "RDLU"; void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(X[i]);read(Y[i]); } for(int i = 2 ; i <= N ; ++i) { if((abs(X[i]) + abs(Y[i])) % 2 != (abs(X[1]) + abs(Y[1])) % 2) { puts("-1");return ; } } bool flag = 0; flag = ((abs(X[1]) + abs(Y[1])) % 2 == 0); if(flag) {op[++M] = 1;} for(int i = 30 ; i >= 0 ; --i) {op[++M] = 1 << i;sum += op[M];} pii st = mp(0,0); if(flag) st = mp(1,0); for(int i = 1 ; i <= N ; ++i) { if(flag) s[i][1] = 'R'; pii p = st; int64 tmp = sum; for(int j = flag ? 2 : 1 ; j <= M ; ++j) { for(int k = 0 ; k <= 3 ; ++k) { int64 tx = p.fi + dx[k] * op[j],ty = p.se + dy[k] * op[j]; int64 a = abs(tx - X[i]) + abs(ty - Y[i]); if(a <= tmp - op[j]) { tmp -= op[j]; s[i][j] = dir[k]; p = mp(tx,ty); break; } } } } out(M);enter; for(int i = 1 ; i <= M ; ++i) { out(op[i]);space; } enter; for(int i = 1 ; i <= N ; ++i) { for(int j = 1 ; j <= M ; ++j) { putchar(s[i][j]); } enter; } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
很容易發現1必須合法next
咱們想要某個大小的樹能夠被割出來
用一種節約節點的方式,能夠用上一個能夠拼出來的樹,接上一個根,不足的用大小爲1的葉子做爲補充sort
而後只要拼到n / 2,再直接加葉子拼到n便可
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define enter putchar('\n') #define space putchar(' ') //#define ivorysi #define MAXN 100005 typedef long long int64; using namespace std; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,dp[100005]; char s[100005]; void add(int u,int v) { out(u);space;out(v);enter; } void Solve() { scanf("%s",s + 1); N = strlen(s + 1); for(int i = 1 ; i <= N ; ++i) dp[i] = s[i] - '0'; if(!dp[1] || dp[N]) {puts("-1");return;} for(int i = 2 ; i <= N - 1 ; ++i) { if(dp[i]) { if(!dp[N - i]) {puts("-1");return;} } } int p = 1,rt = 1; for(int i = 2 ; i <= N / 2 ; ++i) { if(dp[i]) { add(rt,++p);rt = p; while(p < i) {add(rt,++p);} } } add(rt,++p);rt = p; while(p < N) {add(rt,++p);} } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
Di最大的點必定是一個葉子,咱們找到Di - (n - 2)的點是連向它的點
而後以此類推,咱們能夠一邊從大到小枚舉D來算父親邊,同時維護每一個點的子樹大小
可是這必要但不充分,咱們能夠構造這棵樹出來時候從新算一遍D值來檢驗
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define enter putchar('\n') #define space putchar(' ') //#define ivorysi #define MAXN 100005 typedef long long int64; using namespace std; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N; int64 D[MAXN],L[MAXN],dep[MAXN],C[MAXN]; int id[MAXN],s[MAXN],t[MAXN],tot,siz[MAXN]; struct node { int to,next; }E[MAXN * 2]; int head[MAXN],sumE; void add(int u,int v) { E[++sumE].to = v; E[sumE].next = head[u]; head[u] = sumE; } bool cmp(int a,int b) { return D[a] < D[b]; } void dfs(int u,int fa) { siz[u] = 1; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(v != fa){ dep[v] = dep[u] + 1; dfs(v,u); siz[u] += siz[v]; } } } bool dfs1(int u,int fa) { if(C[u] != D[u]) return false; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(v != fa) { C[v] = C[u] - siz[v] + N - siz[v]; if(!dfs1(v,u)) return false; } } return true; } void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(D[i]);id[i] = i;siz[i] = 1; } sort(id + 1,id + N + 1,cmp); for(int i = 1 ; i <= N ; ++i) L[i] = D[id[i]]; for(int i = N ; i > 1 ; --i) { s[++tot] = id[i]; int p = lower_bound(L + 1,L + i,L[i] + 2 * siz[s[tot]] - N) - L; if(L[p] != L[i] + 2 * siz[s[tot]] - N) {puts("-1");return;} t[tot] = id[p]; siz[id[p]] += siz[id[i]]; } for(int i = 1 ; i <= tot ; ++i) {add(s[i],t[i]);add(t[i],s[i]);} dfs(1,0); for(int i = 1 ; i <= N ; ++i) C[1] += dep[i]; if(!dfs1(1,0)) {puts("-1");return;} for(int i = 1 ; i <= tot ; ++i) { out(s[i]);space;out(t[i]);enter; } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); return 0; }