一. 泛型概念的提出(爲何須要泛型)?java
首先,咱們看下下面這段簡短的代碼:編程
1 public class GenericTest { public static void main(String[] args) { List list = new ArrayList(); list.add("qqyumidi"); list.add("corn"); list.add(100); for (int i = 0; i < list.size(); i++) { String name = (String) list.get(i); // 1 System.out.println("name:" + name); } } }
定義了一個List類型的集合,先向其中加入了兩個字符串類型的值,隨後加入一個Integer類型的值。這是徹底容許的,由於此時list默認的類型爲Object類型。在以後的循環中,因爲忘記了以前在list中也加入了Integer類型的值或其餘編碼緣由,很容易出現相似於//1中的錯誤。由於編譯階段正常,而運行時會出現「java.lang.ClassCastException」異常。所以,致使此類錯誤編碼過程當中不易發現。app
在如上的編碼過程當中,咱們發現主要存在兩個問題:dom
1.當咱們將一個對象放入集合中,集合不會記住此對象的類型,當再次從集合中取出此對象時,改對象的編譯類型變成了Object類型,但其運行時類型任然爲其自己類型。函數
2.所以,//1處取出集合元素時須要人爲的強制類型轉化到具體的目標類型,且很容易出現「java.lang.ClassCastException」異常。測試
那麼有沒有什麼辦法可使集合可以記住集合內元素各種型,且可以達到只要編譯時不出現問題,運行時就不會出現「java.lang.ClassCastException」異常呢?答案就是使用泛型。this
二.什麼是泛型?編碼
泛型,即「參數化類型」。一提到參數,最熟悉的就是定義方法時有形參,而後調用此方法時傳遞實參。那麼參數化類型怎麼理解呢?顧名思義,就是將類型由原來的具體的類型參數化,相似於方法中的變量參數,此時類型也定義成參數形式(能夠稱之爲類型形參),而後在使用/調用時傳入具體的類型(類型實參)。spa
看着好像有點複雜,首先咱們看下上面那個例子採用泛型的寫法。code
public class GenericTest { public static void main(String[] args) { /*List list = new ArrayList(); list.add("qqyumidi"); list.add("corn"); list.add(100); */ List<String> list = new ArrayList<String>(); list.add("qqyumidi"); list.add("corn"); //list.add(100); // 1 提示編譯錯誤 for (int i = 0; i < list.size(); i++) { String name = list.get(i); System.out.println("name:" + name); } } }
採用泛型寫法後,在//1處想加入一個Integer類型的對象時會出現編譯錯誤,經過List<String>,直接限定了list集合中只能含有String類型的元素,從而在//2處無須進行強制類型轉換,由於此時,集合可以記住元素的類型信息,編譯器已經可以確認它是String類型了。
結合上面的泛型定義,咱們知道在List<String>中,String是類型實參,也就是說,相應的List接口中確定含有類型形參。且get()方法的返回結果也直接是此形參類型(也就是對應的傳入的類型實參)。下面就來看看List接口的的具體定義:
public interface List<E> extends Collection<E> { int size(); boolean isEmpty(); boolean contains(Object o); Iterator<E> iterator(); Object[] toArray(); <T> T[] toArray(T[] a); boolean add(E e); boolean remove(Object o); boolean containsAll(Collection<?> c); boolean addAll(Collection<? extends E> c); boolean addAll(int index, Collection<? extends E> c); boolean removeAll(Collection<?> c); boolean retainAll(Collection<?> c); void clear(); boolean equals(Object o); int hashCode(); E get(int index); E set(int index, E element); void add(int index, E element); E remove(int index); int indexOf(Object o); int lastIndexOf(Object o); ListIterator<E> listIterator(); ListIterator<E> listIterator(int index); List<E> subList(int fromIndex, int toIndex); }
咱們能夠看到,在List接口中採用泛型化定義以後,<E>中的E表示類型形參,能夠接收具體的類型實參,而且此接口定義中,凡是出現E的地方均表示相同的接受自外部的類型實參。
天然的,ArrayList做爲List接口的實現類,其定義形式是:
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } //...省略掉其餘具體的定義過程 }
由此,咱們從源代碼角度明白了爲何//1處加入Integer類型對象編譯錯誤,且//2處get()到的類型直接就是String類型了。
三.自定義泛型接口、泛型類和泛型方法
從上面的內容中,你們已經明白了泛型的具體運做過程。也知道了接口、類和方法也均可以使用泛型去定義,以及相應的使用。是的,在具體使用時,能夠分爲泛型接口、泛型類和泛型方法。自定義泛型接口、泛型類和泛型方法與上述Java源碼中的List、ArrayList相似。以下,咱們看一個最簡單的泛型類和方法定義:
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); System.out.println("name:" + name.getData()); } } class Box<T> { private T data; public Box() { } public Box(T data) { this.data = data; } public T getData() { return data; } }
在泛型接口、泛型類和泛型方法的定義過程當中,咱們常見的如T、E、K、V等形式的參數經常使用於表示泛型形參,因爲接收來自外部使用時候傳入的類型實參。那麼對於不一樣傳入的類型實參,生成的相應對象實例的類型是否是同樣的呢?
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); System.out.println("name class:" + name.getClass()); // com.qqyumidi.Box System.out.println("age class:" + age.getClass()); // com.qqyumidi.Box System.out.println(name.getClass() == age.getClass()); // true } }
由此,咱們發現,在使用泛型類時,雖然傳入了不一樣的泛型實參,但並無真正意義上生成不一樣的類型,傳入不一樣泛型實參的泛型類在內存上只有一個,即仍是原來的最基本的類型(本實例中爲Box),固然,在邏輯上咱們能夠理解成多個不一樣的泛型類型。究其緣由,在於Java中的泛型這一律念提出的目的,致使其只是做用於代碼編譯階段,在編譯過程當中,對於正確檢驗泛型結果後,會將泛型的相關信息擦出,也就是說,成功編譯事後的class文件中是不包含任何泛型信息的。泛型信息不會進入到運行時階段。
對此總結成一句話:泛型類型在邏輯上看以當作是多個不一樣的類型,實際上都是相同的基本類型。
四.類型通配符
接着上面的結論,咱們知道,Box<Number>和Box<Integer>實際上都是Box類型,如今須要繼續探討一個問題,那麼在邏輯上,相似於Box<Number>和Box<Integer>是否能夠當作具備父子關係的泛型類型呢?爲了弄清這個問題,咱們繼續看下下面這個例子:
public class GenericTest { public static void main(String[] args) { Box<Number> name = new Box<Number>(99); Box<Integer> age = new Box<Integer>(712); getData(name); //The method getData(Box<Number>) in the type GenericTest is //not applicable for the arguments (Box<Integer>) getData(age); // 1 } public static void getData(Box<Number> data){ System.out.println("data :" + data.getData()); } }
咱們發現,在代碼//1處出現了錯誤提示信息:The method getData(Box<Number>) in the t ype GenericTest is not applicable for the arguments (Box<Integer>)。顯然,經過提示信息,咱們知道Box<Number>在邏輯上不能視爲Box<Integer>的父類。那麼,緣由何在呢?
public class GenericTest { public static void main(String[] args) { Box<Integer> a = new Box<Integer>(712); Box<Number> b = a; // 1 Box<Float> f = new Box<Float>(3.14f); b.setData(f); // 2 } public static void getData(Box<Number> data) { System.out.println("data :" + data.getData()); } } class Box<T> { private T data; public Box() { } public Box(T data) { setData(data); } public T getData() { return data; } public void setData(T data) { this.data = data; } }
這個例子中,顯然//1和//2處確定會出現錯誤提示的。在此咱們可使用反證法來進行說明。
假設Box<Number>在邏輯上能夠視爲Box<Integer>的父類,那麼//1和//2處將不會有錯誤提示了,那麼問題就出來了,經過getData()方法取出數據時究竟是什麼類型呢?Integer? Float? 仍是Number?且因爲在編程過程當中的順序不可控性,致使在必要的時候必需要進行類型判斷,且進行強制類型轉換。顯然,這與泛型的理念矛盾,所以,在邏輯上Box<Number>不能視爲Box<Integer>的父類。
好,那咱們回過頭來繼續看「類型通配符」中的第一個例子,咱們知道其具體的錯誤提示的深層次緣由了。那麼如何解決呢?總部能再定義一個新的函數吧。這和Java中的多態理念顯然是違背的,所以,咱們須要一個在邏輯上能夠用來表示同時是Box<Integer>和Box<Number>的父類的一個引用類型,由此,類型通配符應運而生。
類型通配符通常是使用 ? 代替具體的類型實參。注意了,此處是類型實參,而不是類型形參!且Box<?>在邏輯上是Box<Integer>、Box<Number>...等全部Box<具體類型實參>的父類。由此,咱們依然能夠定義泛型方法,來完成此類需求。
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); Box<Number> number = new Box<Number>(314); getData(name); getData(age); getData(number); } public static void getData(Box<?> data) { System.out.println("data :" + data.getData()); } }
有時候,咱們還可能聽到類型通配符上限和類型通配符下限。具體有是怎麼樣的呢?
在上面的例子中,若是須要定義一個功能相似於getData()的方法,但對類型實參又有進一步的限制:只能是Number類及其子類。此時,須要用到類型通配符上限。
public class GenericTest { public static void main(String[] args) { Box<String> name = new Box<String>("corn"); Box<Integer> age = new Box<Integer>(712); Box<Number> number = new Box<Number>(314); getData(name); getData(age); getData(number); //getUpperNumberData(name); // 1 getUpperNumberData(age); // 2 getUpperNumberData(number); // 3 } public static void getData(Box<?> data) { System.out.println("data :" + data.getData()); } public static void getUpperNumberData(Box<? extends Number> data){ System.out.println("data :" + data.getData()); } }
此時,顯然,在代碼//1處調用將出現錯誤提示,而//2 //3處調用正常。
類型通配符上限經過形如Box<? extends Number>形式定義,相對應的,類型通配符下限爲Box<? super Number>形式,其含義與類型通配符上限正好相反,在此不做過多闡述了。
另外試圖對一個帶通配符的泛型類進行操做的時候,老是會報編譯上的錯誤,以下面例子中的註釋1處的setData方法
package org.js.test; /** * Created with IntelliJ IDEA. * User: dev02 * Date: 16-1-25 * Time: 下午5:58 * To change this template use File | Settings | File Templates. */ public class GenericTest { //泛型測試 public static void main(String[] args){ GenericTest.Box<String> boxstring=new GenericTest().new Box<String>("hello world"); GenericTest.Box<Integer> boxInteger=new GenericTest().new Box<Integer>(123); getData(boxstring); getData(boxInteger); } public static void getData(Box<?> box){ System.out.println("Box:"+box.getData()); } public static void setData(Box<?> box){ // box.setData(1); } class Box<T> { private T data; public Box(T data) { setData(data); } public T getData() { return data; } public void setData(T data) { this.data = data; } } }
五.話外篇
本文中的例子主要是爲了闡述泛型中的一些思想而簡單舉出的,並不必定有着實際的可用性。另外,一提到泛型,相信你們用到最多的就是在集合中,其實,在實際的編程過程當中,本身可使用泛型去簡化開發,且能很好的保證代碼質量。