Kafka的基本設計

Kafka是一個分佈式的、可分區的、可複製的消息系統。它提供了普通消息系統的功能,但具備本身獨特的設計。這個獨特的設計是什麼樣的呢?java

首先讓咱們看幾個基本的消息系統術語:服務器

Kafka將消息以topic爲單位進行概括。網絡

將向Kafka topic發佈消息的程序成爲producers.架構

將預訂topics並消費消息的程序成爲consumer.併發

Kafka以集羣的方式運行,能夠由一個或多個服務組成,每一個服務叫作一個broker.負載均衡

producers經過網絡將消息發送到Kafka集羣,集羣向消費者提供消息,以下圖所示:異步

客戶端和服務端經過TCP協議通訊。Kafka提供了Java客戶端,而且對多種語言都提供了支持。分佈式

Topics 和Logs函數

先來看一下Kafka提供的一個抽象概念:topic.性能

一個topic是對一組消息的概括。對每一個topic,Kafka 對它的日誌進行了分區,以下圖所示:

每一個分區都由一系列有序的、不可變的消息組成,這些消息被連續的追加到分區中。分區中的每一個消息都有一個連續的序列號叫作offset,用來在分區中惟一的標識這個消息。

在一個可配置的時間段內,Kafka集羣保留全部發布的消息,無論這些消息有沒有被消費。好比,若是消息的保存策略被設置爲2天,那麼在一個消 息被髮布的兩天時間內,它都是能夠被消費的。以後它將被丟棄以釋放空間。Kafka的性能是和數據量無關的常量級的,因此保留太多的數據並非問題。

實際上每一個consumer惟一須要維護的數據是消息在日誌中的位置,也就是offset.這個offset有consumer來維護:通常情 況下隨着consumer不斷的讀取消息,這offset的值不斷增長,但其實consumer能夠以任意的順序讀取消息,好比它能夠將offset設置 成爲一箇舊的值來重讀以前的消息。

以上特色的結合,使Kafka consumers很是的輕量級:它們能夠在不對集羣和其餘consumer形成影響的狀況下讀取消息。你可使用命令行來"tail"消息而不會對其餘正在消費消息的consumer形成影響。

將日誌分區能夠達到如下目的:首先這使得每一個日誌的數量不會太大,能夠在單個服務上保存。另外每一個分區能夠單獨發佈和消費,爲併發操做topic提供了一種可能。

分佈式每一個分區在Kafka集羣的若干服務中都有副本,這樣這些持有副本的服務能夠共同處理數據和請求,副本數量是能夠配置的。副本使Kafka具有了容錯能力。

每一個分區都由一個服務器做爲「leader」,零或若干服務器做爲「followers」,leader負責處理消息的讀和 寫,followers則去複製leader.若是leader down了,followers中的一臺則會自動成爲leader。集羣中的每一個服務都會同時扮演兩個角色:做爲它所持有的一部分分區的leader,同 時做爲其餘分區的followers,這樣集羣就會據有較好的負載均衡。

ProducersProducer將消息發佈到它指定的topic中,並負責決定發佈到哪一個分區。一般簡單的由負載均衡機制隨機選擇分區,但也能夠經過特定的分區函數選擇分區。使用的更多的是第二種。Consumers發佈消息一般有兩種模式:隊列模式和發佈-訂閱模式。隊列模式中,consumers能夠同時從服務端讀取消息,每一個消息只被其中一個consumer讀到;發佈-訂閱模式中消息被廣播到全部的consumer中。Consumers能夠加入一個consumer 組,共同競爭一個topic,topic中的消息將被分發到組中的一個成員中。同一組中的consumer能夠在不一樣的程序中,也能夠在不一樣的機器上。若是全部的consumer都在一個組中,這就成爲了傳統的隊列模式,在各consumer中實現負載均衡。若是全部的consumer都不在不一樣的組中,這就成爲了發佈-訂閱模式,全部的消息都被分發到全部的consumer中。更常見的是,每一個topic都有若干數量的consumer組,每一個組都是一個邏輯上的「訂閱者」,爲了容錯和更好的穩定性,每一個組由若干consumer組成。這其實就是一個發佈-訂閱模式,只不過訂閱者是個組而不是單個consumer。

由兩個機器組成的集羣擁有4個分區 (P0-P3) 2個consumer組. A組有兩個consumerB組有4個

相比傳統的消息系統,Kafka能夠很好的保證有序性。

傳統的隊列在服務器上保存有序的消息,若是多個consumers同時從這個服務器消費消息,服務器就會以消息存儲的順序向consumer分 發消息。雖然服務器按順序發佈消息,可是消息是被異步的分發到各consumer上,因此當消息到達時可能已經失去了原來的順序,這意味着併發消費將致使 順序錯亂。爲了不故障,這樣的消息系統一般使用「專用consumer」的概念,其實就是隻容許一個消費者消費消息,固然這就意味着失去了併發性。

在這方面Kafka作的更好,經過分區的概念,Kafka能夠在多個consumer組併發的狀況下提供較好的有序性和負載均衡。將每一個分區分 只分發給一個consumer組,這樣一個分區就只被這個組的一個consumer消費,就能夠順序的消費這個分區的消息。由於有多個分區,依然能夠在多 個consumer組之間進行負載均衡。注意consumer組的數量不能多於分區的數量,也就是有多少分區就容許多少併發消費。

Kafka只能保證一個分區以內消息的有序性,在不一樣的分區之間是不能夠的,這已經能夠知足大部分應用的需求。若是須要topic中全部消息的有序性,那就只能讓這個topic只有一個分區,固然也就只有一個consumer組消費它。

kafka, Kafka分佈式消息, Kafka分佈式消息系統, Kafka集羣, SpringMVC+Mybatis, dubbo+zookeeper, java分佈式架構

完整的項目源碼來源  歡迎你們一塊兒學習研究相關技術,源碼獲取請加求求:2670716182

相關文章
相關標籤/搜索