知乎上有一個問題,內容是已知空間三個點的座標,求三個點所構成的圓的圓心座標(編程實現)?python
根據圓的定義,這道題的核心就是找到一個點,到已知的三個點的距離相等,利用數學知識能夠求解以下:算法
例如 :給定a(x1,y1) b(x2,y2) c(x3,y3)求外接圓心座標O(x,y)
1. 首先,外接圓的圓心是三角形三條邊的垂直平分線的交點,咱們根據圓心到頂點的距離相等,能夠列出如下方程:
(x1-x)*(x1-x)+(y1-y)*(y1-y)=(x2-x)*(x2-x)+(y2-y)*(y2-y);
(x2-x)*(x2-x)+(y2-y)*(y2-y)=(x3-x)*(x3-x)+(y3-y)*(y3-y);
2.化簡獲得:
2*(x2-x1)*x+2*(y2-y1)y=x2^2+y2^2-x1^2-y1^2;
2*(x3-x2)*x+2*(y3-y2)y=x3^2+y3^2-x2^2-y2^2;
令:A1=2*(x2-x1);
B1=2*(y2-y1);
C1=x2^2+y2^2-x1^2-y1^2;
A2=2*(x3-x2);
B2=2*(y3-y2);
C2=x3^2+y3^2-x2^2-y2^2;
即:A1*x+B1y=C1;
A2*x+B2y=C2;
3.最後根據克拉默法則:
x=((C1*B2)-(C2*B1))/((A1*B2)-(A2*B1));
y=((A1*C2)-(A2*C1))/((A1*B2)-(A2*B1));編程
固然,咱們今天不是來學習數學公式和數學推導的。Tensorflow是google開源的一款深度學習的工具,其實咱們能夠利用Tensoflow提供了強大的數學計算能力來求解相似的數學問題。bash
這道題,咱們能夠利用梯度降低算法,由於圓心是一個最優解,任何其它點都不滿條件。(前提是這三個點不在一條直線上,不然是沒有解的)session
好了,咱們先看代碼先,而後在解釋。機器學習
import tensorflow as tf import numpy # Parameters learning_rate = 0.1 training_epochs = 3000 display_step = 50 # Training Data, 3 points that form a triangel train_X = numpy.asarray([3.0,6.0,9.0]) train_Y = numpy.asarray([7.0,9.0,7.0]) # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set vaibale for center cx = tf.Variable(3, name="cx",dtype=tf.float32) cy = tf.Variable(3, name="cy",dtype=tf.float32) # Caculate the distance to the center and make them as equal as possible distance = tf.pow(tf.add(tf.pow((X-cx),2),tf.pow((Y-cy),2)),0.5) mean = tf.reduce_mean(distance) cost = tf.reduce_sum(tf.pow((distance-mean),2)/3) # Gradient descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() # Start training with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): sess.run(optimizer, feed_dict={X: train_X, Y: train_Y}) c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) if (c - 0) < 0.0000000001: break #Display logs per epoch step if (epoch+1) % display_step == 0: c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) m = sess.run(mean, feed_dict={X: train_X, Y:train_Y}) print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ "CX=", sess.run(cx), "CY=", sess.run(cy), "Mean=", "{:.9f}".format(m) print "Optimization Finished!" training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print "Training cost=", training_cost, "CX=", round(sess.run(cx),2), "CY=", round(sess.run(cy),2), "R=", round(m,2), '\n'
運行以上的python代碼,結果以下:函數
Epoch: 0050 cost= 0.290830940 CX= 5.5859795 CY= 2.6425467 Mean= 5.657848835 Epoch: 0100 cost= 0.217094064 CX= 5.963002 CY= 3.0613017 Mean= 5.280393124 Epoch: 0150 cost= 0.173767462 CX= 5.997781 CY= 3.5245996 Mean= 4.885882378 Epoch: 0200 cost= 0.126330480 CX= 5.9999194 CY= 4.011508 Mean= 4.485837936 Epoch: 0250 cost= 0.078660280 CX= 5.9999976 CY= 4.4997787 Mean= 4.103584766 Epoch: 0300 cost= 0.038911112 CX= 5.9999976 CY= 4.945466 Mean= 3.775567770 Epoch: 0350 cost= 0.014412695 CX= 5.999998 CY= 5.2943544 Mean= 3.535865068 Epoch: 0400 cost= 0.004034557 CX= 5.999998 CY= 5.5200934 Mean= 3.390078306 Epoch: 0450 cost= 0.000921754 CX= 5.999998 CY= 5.6429324 Mean= 3.314131498 Epoch: 0500 cost= 0.000187423 CX= 5.999998 CY= 5.7023263 Mean= 3.278312683 Epoch: 0550 cost= 0.000035973 CX= 5.999998 CY= 5.7292333 Mean= 3.262284517 Epoch: 0600 cost= 0.000006724 CX= 5.999998 CY= 5.7410445 Mean= 3.255288363 Epoch: 0650 cost= 0.000001243 CX= 5.999998 CY= 5.746154 Mean= 3.252269506 Epoch: 0700 cost= 0.000000229 CX= 5.999998 CY= 5.7483506 Mean= 3.250972748 Epoch: 0750 cost= 0.000000042 CX= 5.999998 CY= 5.749294 Mean= 3.250416517 Epoch: 0800 cost= 0.000000008 CX= 5.999998 CY= 5.749697 Mean= 3.250178576 Epoch: 0850 cost= 0.000000001 CX= 5.999998 CY= 5.749871 Mean= 3.250076294 Epoch: 0900 cost= 0.000000000 CX= 5.999998 CY= 5.7499437 Mean= 3.250033140 Optimization Finished! Training cost= 9.8869656e-11 CX= 6.0 CY= 5.75 R= 3.25
通過900屢次的迭代,圓心位置是(6.0,5.75),半徑是3.25。工具
# Parameters learning_rate = 0.1 training_epochs = 3000 display_step = 50
# Training Data, 3 points that form a triangel train_X = numpy.asarray([3.0,6.0,9.0]) train_Y = numpy.asarray([7.0,9.0,7.0]) # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Set vaibale for center cx = tf.Variable(3, name="cx",dtype=tf.float32) cy = tf.Variable(3, name="cy",dtype=tf.float32)
# Caculate the distance to the center and make them as equal as possible distance = tf.pow(tf.add(tf.pow((X-cx),2),tf.pow((Y-cy),2)),0.5) mean = tf.reduce_mean(distance) cost = tf.reduce_sum(tf.pow((distance-mean),2)/3) # Gradient descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
這幾行代碼是算法的核心。學習
下面就是訓練的過程了:google
# Start training with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): sess.run(optimizer, feed_dict={X: train_X, Y: train_Y}) c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) if (c - 0) < 0.0000000001: break #Display logs per epoch step if (epoch+1) % display_step == 0: c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) m = sess.run(mean, feed_dict={X: train_X, Y:train_Y}) print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ "CX=", sess.run(cx), "CY=", sess.run(cy), "Mean=", "{:.9f}".format(m) print "Optimization Finished!" training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print "Training cost=", training_cost, "CX=", round(sess.run(cx),2), "CY=", round(sess.run(cy),2), "R=", round(m,2), '\n'
原題目是空間上的點,個人例子是平面上的點,其實沒有本質差異。能夠加一個Z軸的數據。這個題,三維實際上是多餘的,徹底能夠把空間上的三個點投影到平面上來解決。
我用JS實現過另外一個算法,可是不是總收斂。你們能夠參考着看一看:
其中,綠色三個點條件點,紅色的圓是最終的學習結果,黃色的中心點學習的軌跡。
利用這個例子,我想說的是: