Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
複製代碼
給定一個按升序排列元素的數組,將其轉換爲高度平衡的BST。 對於該問題,高度平衡二叉樹定義爲每一個節點的兩個子樹深度相差不超過1的二叉樹。 例子: 給定排序後的數組:[-10,-3,0,5,9], 一個可能的答案是:[0,-3,9,-10,null,5],表示高度平衡BST:node
0 / \ -3 9 / / -10 5 複製代碼
本題是相對而言比較複雜,須要一個高度平衡的二叉樹,可是這邊參數很特定,是一個排序的數組,排序的數組,變成高度平衡的二叉樹,那不是隻要對半折開就行了嘛,那不就是一顆樹了嘛?git
按照分治法github
public TreeNode sortedArrayToBST(int[] nums) {
if (nums.length <= 0) {
return null;
}
return sortedArrayToBST(nums, 0, nums.length - 1);
}
private TreeNode sortedArrayToBST(int[] nums, int left, int right) {
if (left > right) {
return null;
}
if (left == right) {
return new TreeNode(nums[left]);
}
int mid = (left + right+1) / 2;
TreeNode leftNode = sortedArrayToBST(nums, left, mid - 1);
TreeNode rightNode = sortedArrayToBST(nums, mid + 1, right);
TreeNode treeNode = new TreeNode(nums[mid]);
treeNode.left = leftNode;
treeNode.right = rightNode;
return treeNode;
}
複製代碼
時間複雜度: 該方案用了二分法的方式,因此爲O(n)=O(nlogn)數組
空間複雜度: 該方案沒有使用額外的空間,因此空間複雜度O(n)=O(1)bash
本題的大體解法如上所訴,根據二分法的方式,來解決對半拆分的狀況。其實這邊應該是有規律的,好比應該是和中間節點是有倍數關係的,可是具體我也沒有去驗證。ui