在周志華的西瓜書和李航的統計機器學習中對決策樹ID3算法都有很詳細的解釋,如何實現呢?核心點有以下幾個步驟算法
step1:計算香農熵app
from math import log import operator # 計算香農熵 def calculate_entropy(data): label_counts = {} for feature_data in data: laber = feature_data[-1] # 最後一行是laber if laber not in label_counts.keys(): label_counts[laber] = 0 label_counts[laber] += 1 count = len(data) entropy = 0.0 for key in label_counts: prob = float(label_counts[key]) / count entropy -= prob * log(prob, 2) return entropy
step2.計算某個feature的信息增益的方法機器學習
# 計算某個feature的信息增益 # index:要計算信息增益的feature 對應的在data 的第幾列 # data 的香農熵 def calculate_relative_entropy(data, index, entropy): feat_list = [number[index] for number in data] # 獲得某個特徵下全部值(某列) uniqual_vals = set(feat_list) new_entropy = 0 for value in uniqual_vals: sub_data = split_data(data, index, value) prob = len(sub_data) / float(len(data)) new_entropy += prob * calculate_entropy(sub_data) # 對各子集香農熵求和 relative_entropy = entropy - new_entropy # 計算信息增益 return relative_entropy
step3.選擇最大信息增益的feature函數
# 選擇最大信息增益的feature def choose_max_relative_entropy(data): num_feature = len(data[0]) - 1 base_entropy = calculate_entropy(data)#香農熵 best_infor_gain = 0 best_feature = -1 for i in range(num_feature): info_gain=calculate_relative_entropy(data, i, base_entropy) #最大信息增益 if (info_gain > best_infor_gain): best_infor_gain = info_gain best_feature = i return best_feature
step4.構建決策樹工具
def create_decision_tree(data, labels): class_list=[example[-1] for example in data] # 類別相同,中止劃分 if class_list.count(class_list[-1]) == len(class_list): return class_list[-1] # 判斷是否遍歷完全部的特徵時返回個數最多的類別 if len(data[0]) == 1: return most_class(class_list) # 按照信息增益最高選取分類特徵屬性 best_feat = choose_max_relative_entropy(data) best_feat_lable = labels[best_feat] # 該特徵的label decision_tree = {best_feat_lable: {}} # 構建樹的字典 del(labels[best_feat]) # 從labels的list中刪除該label feat_values = [example[best_feat] for example in data] unique_values = set(feat_values) for value in unique_values: sub_lables=labels[:] # 構建數據的子集合,並進行遞歸 decision_tree[best_feat_lable][value] = create_decision_tree(split_data(data, best_feat, value), sub_lables) return decision_tree
在構建決策樹的過程當中會用到兩個工具方法:學習
# 當遍歷完全部的特徵時返回個數最多的類別 def most_class(classList): class_count={} for vote in classList: if vote not in class_count.keys():class_count[vote]=0 class_count[vote]+=1 sorted_class_count=sorted(class_count.items,key=operator.itemgetter(1),reversed=True) return sorted_class_count[0][0] # 工具函數輸入三個變量(待劃分的數據集,特徵,分類值)返回不含劃分特徵的子集 def split_data(data, axis, value): ret_data=[] for feat_vec in data: if feat_vec[axis]==value : reduce_feat_vec=feat_vec[:axis] reduce_feat_vec.extend(feat_vec[axis+1:]) ret_data.append(reduce_feat_vec) return ret_data