akka cluster sharding source code 學習 (2/5) handle off

一旦 shard coordinator(至關於分佈式系統的 zookeeper) 啓動,它就會啓動一個定時器,每隔必定的時間嘗試平衡一下集羣中各個節點的負載,平衡的辦法是把那些負載較重的 actor 移動到負載較輕的節點上。在這一點上,我之前的理解有誤,我覺得 shardRegion 是移動的最小單位。react

val rebalanceTask = context.system.scheduler.schedule(rebalanceInterval, rebalanceInterval, self, RebalanceTick)

 當 coordinator 收到 ReblanceTick 後,就開始嘗試平衡系統負載負載均衡

case RebalanceTick ⇒
      if (persistentState.regions.nonEmpty) {
        val shardsFuture = allocationStrategy.rebalance(persistentState.regions, rebalanceInProgress)
        shardsFuture.value match {
          case Some(Success(shards)) ⇒
            continueRebalance(shards)
          case _ ⇒
            // continue when future is completed
            shardsFuture.map { shards ⇒ RebalanceResult(shards)
            }.recover {
              case _ ⇒ RebalanceResult(Set.empty)
            }.pipeTo(self)
        }
      }

 

上面的邏輯我看懂了,可是 Future 的用法沒看明白。按照通常的寫法,當 shardsFuture 返回 Failure 之後,應該直接執行 RebalanceResut(Set.empty).pipeTo(self),不知道爲何失敗之後還要嘗試等待 Future分佈式

allocationStrategy 提供了默認的實現,也能夠自定義負載均衡策略。rebalance 函數返回的是 Set(ShardId),即那些要被移動的 shards函數

 

當 coordinator 收到 RebalanceResult 後,開始 啓動 balance 邏輯spa

def continueRebalance(shards: Set[ShardId]): Unit =
    shards.foreach { shard ⇒
      if (!rebalanceInProgress(shard)) {
        persistentState.shards.get(shard) match {
          case Some(rebalanceFromRegion) ⇒
            rebalanceInProgress += shard
            log.debug("Rebalance shard [{}] from [{}]", shard, rebalanceFromRegion)
            context.actorOf(rebalanceWorkerProps(shard, rebalanceFromRegion, handOffTimeout,
              persistentState.regions.keySet ++ persistentState.regionProxies)
              .withDispatcher(context.props.dispatcher))
          case None ⇒
            log.debug("Rebalance of non-existing shard [{}] is ignored", shard)
        }

      }
    }

 

rebalanceInProcess 是一個 Set,記錄正在被移動的 shard,我想,在新一輪 balance 開始時, rebalanceInProcess 爲空的狀況只會發生在上次 balance 尚未作完。不知道這個時候,是應該報錯仍是繼續 balance 更好,由於 balanceStrategy 應該不會考慮吧到 上一輪 balance 還沒作完這種可能性。debug

而後, coordinator 啓動 rebalanceWorker,也就是上篇提到的替身 actor。code

 

private[akka] class RebalanceWorker(shard: String, from: ActorRef, handOffTimeout: FiniteDuration,
                                      regions: Set[ActorRef]) extends Actor {
    import Internal._
    regions.foreach(_ ! BeginHandOff(shard))
    var remaining = regions

    import context.dispatcher
    context.system.scheduler.scheduleOnce(handOffTimeout, self, ReceiveTimeout)

    def receive = {
      case BeginHandOffAck(`shard`) ⇒
        remaining -= sender()
        if (remaining.isEmpty) {
          from ! HandOff(shard)
          context.become(stoppingShard, discardOld = true)
        }
      case ReceiveTimeout ⇒ done(ok = false)
    }

    def stoppingShard: Receive = {
      case ShardStopped(shard) ⇒ done(ok = true)
      case ReceiveTimeout      ⇒ done(ok = false)
    }

    def done(ok: Boolean): Unit = {
      context.parent ! RebalanceDone(shard, ok)
      context.stop(self)
    }
  }

akka 的邏輯是基於消息傳遞的,這種代碼實際上是很難去讀的。在 rebalanceWorker 運行時,牽扯到不少個 actor。首先是,coordinator,其次是 shardRegion,也就是 host 待遷移 shard actor 的那個 region,而後是 shard actor 自己,最後是系統裏全部的 shardRegion,他們也要參與進來。寫到這裏,我不由把電腦屏幕豎了起來。blog

 

1. RebalanceWorker 首先給全部的 ShardRegion BeginHandOff 消息,告訴你們,hand off 開始,而後等待你們的回覆ip

2. ShardRegion 收到 BeginHandOff 後,開始更新本身的知識庫,將 HostShardRegion 和 shardActor 的記憶從本身的知識庫中抹去utf-8

case BeginHandOff(shard) ⇒
      log.debug("BeginHandOff shard [{}]", shard)
      if (regionByShard.contains(shard)) {
        val regionRef = regionByShard(shard)
        val updatedShards = regions(regionRef) - shard
        if (updatedShards.isEmpty) regions -= regionRef
        else regions = regions.updated(regionRef, updatedShards)
        regionByShard -= shard
      }
      sender() ! BeginHandOffAck(shard)

 最後,發送 BeginHandOffAck 消息,告訴 rebalanceWorker 本身準備完畢(這些 shardRegion 之後也沒事幹了)

3. 繼續回到 rebalanceWorker,它發送 HandOff 告訴 Host shard actor 的 ShardRegion,你能夠作本身的清理工做了。而後將本身的狀態設置成 stoppingShard,等待 ShardStopped 消息,這個消息的來源有兩個,一個是 HostShardRegion,另一個是 shard actor

4. HostShardRegion 收到 HandOff 消息後

case msg @ HandOff(shard) ⇒
      log.debug("HandOff shard [{}]", shard)

      // must drop requests that came in between the BeginHandOff and now,
      // because they might be forwarded from other regions and there
      // is a risk or message re-ordering otherwise
      if (shardBuffers.contains(shard)) {
        shardBuffers -= shard
        loggedFullBufferWarning = false
      }

      if (shards.contains(shard)) {
        handingOff += shards(shard)
        shards(shard) forward msg
      } else
        sender() ! ShardStopped(shard)

 若是 HostShardRegion 已經再也不含有 shard actor,那麼直接返回 ShardStopped,不然 HandOff 這個 Set 加入 shard actor,並將 HandOff 傳給 shard actor

5. 又看了一遍代碼,發現 shard actor 和 entity actor 又是兩種東西,shard actor 存在於 entity actor 和 shard region 之間

目前還不知道 entity actor 和 shard region 之間的關係

def getEntity(id: EntityId): ActorRef = {
    val name = URLEncoder.encode(id, "utf-8")
    context.child(name).getOrElse {
      log.debug("Starting entity [{}] in shard [{}]", id, shardId)

      val a = context.watch(context.actorOf(entityProps, name))
      idByRef = idByRef.updated(a, id)
      refById = refById.updated(id, a)
      state = state.copy(state.entities + id)
      a
    }
  }

 

從這段代碼來看, shard actor 與 entity actor 是一對多的關係。

def receiveCoordinatorMessage(msg: CoordinatorMessage): Unit = msg match {
    case HandOff(`shardId`) ⇒ handOff(sender())
    case HandOff(shard)     ⇒ log.warning("Shard [{}] can not hand off for another Shard [{}]", shardId, shard)
    case _                  ⇒ unhandled(msg)
  }

  def handOff(replyTo: ActorRef): Unit = handOffStopper match {
    case Some(_) ⇒ log.warning("HandOff shard [{}] received during existing handOff", shardId)
    case None ⇒
      log.debug("HandOff shard [{}]", shardId)

      if (state.entities.nonEmpty) {
        handOffStopper = Some(context.watch(context.actorOf(
          handOffStopperProps(shardId, replyTo, idByRef.keySet, handOffStopMessage))))

        //During hand off we only care about watching for termination of the hand off stopper
        context become {
          case Terminated(ref) ⇒ receiveTerminated(ref)
        }
      } else {
        replyTo ! ShardStopped(shardId)
        context stop self
      }
  }
def receiveTerminated(ref: ActorRef): Unit = {
if (handOffStopper.exists(_ == ref))
context stop self
else if (idByRef.contains(ref) && handOffStopper.isEmpty)
entityTerminated(ref)
}

 從這段代碼看, shard actor 與 entity actor 的關係是一對一,由於當 entity stop self 了之後, shard actor 也會 stop self。這讓我想到 coursera reactive programming 的最後一道做業題,爲何也是相似於 一個 entity 有一個 shard actor 對應。 

相關文章
相關標籤/搜索