Broadcasting

Broadcasting

  • expand(擴展數據)
  • without copying data(不復制數據)
  • tf.broadcast_to

Key idea

  1. Insert 1 dim ahead if needed
  2. Expand dims with size 1 to same size
  3. example:
  • [4,16,16,32]
  • [32]
  • [4,16,16,32]
  • [1,1,1,32]dom

  • [4,16,16,32]
  • [4,16,16,32]ide

05-Broadcasting-broadcast示例.jpg

How to understand?

  • When it has no axis
    • Create a new concepy
    • [classes, students, scores] + [scores]
  • When it has dim of size 1
    • Treat it shared by all
    • [classes,students,scores] + [students,1]

Broadcasting能夠理解成把維度分紅大維度和小維度,小維度較爲具體,大維度更加抽象。也就是小維度針對某個示例,而後讓這個示例通用語大維度。idea

Why broadcasting?

  1. for real demanding
    • [classes, students, scores]
    • Add bias for every student: +5 score
    • [4,32,8] + [4,32,8]
    • [4,32,8] + [5.0]
  2. memory consumption
    • [4,32,8] -> 1024
    • bias = [8]: [5.0,5.0,5.0,...] -> 8

Broadcastable?

  • Match from Last dim!
    • if current dim=1, expand to same
    • if either has no dim, insert one dim and expand to same
    • otherwise, Not Broadcastable
  • [4,32,14,14]
  • [1,32,1,1] -> [4,32,14,14] √
  • [14,14] -> [1,1,14,14] -> [4,32,14,14] √
  • [2,32,14,14] ×
  • [3] √
  • [32,32,1] √
  • [4,1,1,1] √
import tensorflow as tf
x = tf.random.normal([4,32,32,3])
x.shape
TensorShape([4, 32, 32, 3])
(x+tf.random.normal([3])).shape
TensorShape([4, 32, 32, 3])
(x+tf.random.normal([32,32,1])).shape
TensorShape([4, 32, 32, 3])
(x+tf.random.normal([4,1,1,1])).shape
TensorShape([4, 32, 32, 3])
try:
    (x+tf.random.normal([1,4,1,1])).shape
except Exception as e:
    print(e)
Incompatible shapes: [4,32,32,3] vs. [1,4,1,1] [Op:Add] name: add/
(x+tf.random.normal([4,1,1,1])).shape
TensorShape([4, 32, 32, 3])
b = tf.broadcast_to(tf.random.normal([4,1,1,1]),[4,32,32,3])
b.shape
TensorShape([4, 32, 32, 3])

Broadcast VS Tile

a = tf.ones([3,4])
a.shape
TensorShape([3, 4])
a1 = tf.broadcast_to(a,[2,3,4])
a1.shape
TensorShape([2, 3, 4])
a2 = tf.expand_dims(a,axis=0)  # 0前插入一維
a2.shape
TensorShape([1, 3, 4])
a2 = tf.tile(a2,[2,1,1])  # 複製一維2次,複製2、三維1次
a2.shape
TensorShape([2, 3, 4])
相關文章
相關標籤/搜索