飛龍繡球的顏色追蹤與最小外邊框選擇

這是209.11.23的博客ios

下面進入正題 Opencv的內容
ide

各位都是大佬函數

HSV的顏色表和計算方法就不用說了吧spa

#include <opencv2/opencv.hpp>
#include<iostream>
#include<string>
using namespace cv;
using namespace std;    
//輸入圖像
Mat img;
//灰度值歸一化
Mat bgr;
//HSV圖像
Mat hsv;
//色相
string windowName = "src";
//輸出圖像的顯示窗口
string dstName = "dst";
//輸出圖像
Mat dst;
Mat mask;
//回調函數
Mat picture;
int main(int argc, char** argv)
{
            system("color 02");
            cout << "尋找黃色飛龍繡球獲得最小外邊框" << endl;
        VideoCapture capture(0);
        while (1)
        {
            //幀轉變爲圖像
            capture >> picture;//imread("D:\\4.jpg");
             //方框濾波處理
            boxFilter(picture, img, -1, Size(5, 2));
            if (!img.data || img.channels() != 3)
            return -1;
            dst = Mat::zeros(img.size(), img.type());
            bgr = img.clone();        //對輸出圖像大小的限制 Automatic size
            //HSV轉換
            cvtColor(bgr, hsv, CV_BGR2HSV);
            inRange(hsv, Scalar(14, 43, 44), Scalar(33, 255 , 255), mask);
            Mat element = getStructuringElement(MORPH_RECT, Size(9, 11)); //圖像腐蝕
            erode(mask, mask, element, Point(-1, -1), 2);
            morphologyEx(mask, mask, MORPH_DILATE, getStructuringElement(MORPH_DILATE, Size(25, 25)));//形態學膨脹
            dilate(mask, mask, element);//圖像膨脹
            imshow("66666", mask);
            namedWindow(dstName, 0);
            namedWindow(windowName, 0);
            vector<vector<Point> > contours;
            vector<Vec4i> hierarchy;
            findContours(mask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
            RotatedRect box;
            double area = 0;
            for (int i = 0; i < contours.size(); i++)
            {
                if (contourArea(contours[i]) > area)
                {
                    area = contourArea(contours[i]);
                    box = minAreaRect(contours[i]);
                }    
            }
            Point2f vertex[4];
            box.points(vertex);
            for(int i=0;i<4;i++)
            line(img, vertex[i], vertex[(i + 1) % 4], Scalar(100, 200, 300), 2, LINE_AA);
            imshow(windowName, img); 
            imshow(dstName, dst);
            waitKey(10);
        }
return 0;    
}
相關文章
相關標籤/搜索