cifar10的各層數據和參數可視化javascript
先用caffe對cifar10進行訓練,將訓練的結果模型進行保存,獲得一個caffemodel,而後從測試圖片中選出一張進行測試,並進行可視化。css
#加載必要的庫
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import sys,os,caffe
#設置當前目錄,判斷模型是否訓練好
caffe_root = '/home/bnu/caffe/'
sys.path.insert(0, caffe_root + 'python')
os.chdir(caffe_root)
if not os.path.isfile(caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel'):
print("caffemodel is not exist...")
#利用提早訓練好的模型,設置測試網絡
caffe.set_mode_gpu()
net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_quick.prototxt',
caffe_root + 'examples/cifar10/cifar10_quick_iter_4000.caffemodel',
caffe.TEST)
net.blobs['data'].data.shape
#加載測試圖片,並顯示
im = caffe.io.load_image('examples/images/32.jpg')
print im.shape
plt.imshow(im)
plt.axis('off')
# 編寫一個函數,將二進制的均值轉換爲python的均值
def convert_mean(binMean,npyMean):
blob = caffe.proto.caffe_pb2.BlobProto()
bin_mean = open(binMean, 'rb' ).read()
blob.ParseFromString(bin_mean)
arr = np.array( caffe.io.blobproto_to_array(blob) )
npy_mean = arr[0]
np.save(npyMean, npy_mean )
binMean=caffe_root+'examples/cifar10/mean.binaryproto'
npyMean=caffe_root+'examples/cifar10/mean.npy'
convert_mean(binMean,npyMean)
#將圖片載入blob中,並減去均值
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(npyMean).mean(1).mean(1)) # 減去均值
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
net.blobs['data'].data[...] = transformer.preprocess('data',im)
inputData=net.blobs['data'].data
#顯示減去均值先後的數據
plt.figure()
plt.subplot(1,2,1),plt.title("origin")
plt.imshow(im)
plt.axis('off')
plt.subplot(1,2,2),plt.title("subtract mean")
plt.imshow(transformer.deprocess('data', inputData[0]))
plt.axis('off')
#運行測試模型,並顯示各層數據信息
net.forward()
[(k, v.data.shape) for k, v in net.blobs.items()]
#顯示各層的參數信息
[(k, v[0].data.shape) for k, v in net.params.items()]
# 編寫一個函數,用於顯示各層數據
def show_data(data, padsize=1, padval=0):
data -= data.min()
data /= data.max()
# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.figure()
plt.imshow(data,cmap='gray')
plt.axis('off')
plt.rcParams['figure.figsize'] = (8, 8)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
#顯示第一個卷積層的輸出數據和權值(filter)
show_data(net.blobs['conv1'].data[0])
print net.blobs['conv1'].data.shape
show_data(net.params['conv1'][0].data.reshape(32*3,5,5))
print net.params['conv1'][0].data.shape
#顯示第一次pooling後的輸出數據
show_data(net.blobs['pool1'].data[0])
net.blobs['pool1'].data.shape
#顯示第二次卷積後的輸出數據以及相應的權值(filter)
show_data(net.blobs['conv2'].data[0],padval=0.5)
print net.blobs['conv2'].data.shape
show_data(net.params['conv2'][0].data.reshape(32**2,5,5))
print net.params['conv2'][0].data.shape
#顯示第三次卷積後的輸出數據以及相應的權值(filter),取前1024個進行顯示
show_data(net.blobs['conv3'].data[0],padval=0.5)
print net.blobs['conv3'].data.shape
show_data(net.params['conv3'][0].data.reshape(64*32,5,5)[:1024])
print net.params['conv3'][0].data.shape
#顯示第三次池化後的輸出數據
show_data(net.blobs['pool3'].data[0],padval=0.2)
print net.blobs['pool3'].data.shape
# 最後一層輸入屬於某個類的機率
feat = net.blobs['prob'].data[0]
print feat
plt.plot(feat.flat)
從輸入的結果和圖示來看,最大的機率是7.17785358e-01,屬於第5類(標號從0開始)。與cifar10中的10種類型名稱進行對比:html
airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truckhtml5
根據測試結果,判斷爲dog。 測試無誤!java