Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence. We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9. ios
Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single line. The values of n, m and d will satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0 0 will indicate end of input and should not be processed. 測試
For each input set, output a single line consisting of a comma-separated list of integers forming a degree danti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no anti-prime sequence exists, output No anti-prime sequence exists. spa
1 10 2 1 10 3 1 10 5 40 60 7 0 0 0
1,3,5,4,2,6,9,7,8,10 1,3,5,4,6,2,10,8,7,9 No anti-prime sequence exists. 40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
本題的思路很直白,由於數據量並非很是大,只是1000的範圍,長度爲10,那麼和最大也只有10000之內,因此能夠暴力搜索,對每個節點都進行判斷而且迭代搜索,明顯是用DFS。注意先用篩法作個素數表輔助判斷,直接進行素數判斷太麻煩,會超時。這裏看到別人的代碼,說道DFS卡時,其實就是限制DFS的總搜索次數,模糊判斷用來節省時間。固然這樣答案並不許確,可是對於數據規模較小的時候,能夠取一些極限值測試,本題4000次搜索就足夠了。 code
// Problem#: 1002 // Submission#: 1792032 // The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License // URI: http://creativecommons.org/licenses/by-nc-sa/3.0/ // All Copyright reserved by Informatic Lab of Sun Yat-sen University #include<iostream> #include<cstring> using namespace std; #define MAX 10000 #define N 1010 bool isPrime[MAX]; int prime[MAX]; bool visit[N]; int re[N]; int n,m,d,t,sum; bool flag; void primeList(){ memset(isPrime,true,sizeof(isPrime)); for(int i = 2;i <= MAX;++i){ if(isPrime[i]) prime[++prime[0]] = i; for(int j = 1,k;j <= MAX && (k = i * prime[j]) <= MAX;++j) { isPrime[k] = false; if(i % prime[j] == 0) break; } } } bool judge(int len){ int sum; if(len <= 1) return true; for(int i = 0;i < len;++i){ sum = 0; if(i <= len - d){ for(int j = i;j - i + 1<= d ;++j){ sum += re[j]; if(j-i+1 > 1 && isPrime[sum]) return false; } }else{ for(int j = i;j < len;++j){ sum += re[j]; if(j-i+1 > 1 && isPrime[sum]) return false; } } } return true; } void dfs(int num){ if(++t > 4000) return; if(flag) return; if(!judge(num)) return; if(num== m - n + 1){ flag = 1; return; } for(int i = n;i <= m && !flag;++i){ if(visit[i]) continue; re[num] = i; visit[i] = 1; dfs(num+1); visit[i] = 0; } } int main(){ primeList(); while(cin>>n>>m>>d && n && m && d){ flag = false; t = 0; memset(visit,0,sizeof(visit)); dfs(0); if(flag){ cout << re[0]; for( int i=1 ; i<m-n+1 ; ++i ) cout << "," << re[i]; cout << endl; }else cout << "No anti-prime sequence exists." << endl; } return 0; }