spark 問題

問題描述1

  使用spark-shell sc.textFile(「hdfs://test02.com:8020/tmp/w」).count 出現以下異常:java

java.lang.RuntimeException: Error in configuring objectnode

at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:109)linux

at org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:75)shell

at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:133)apache

at org.apache.spark.rdd.HadoopRDD.getInputFormat(HadoopRDD.scala:186)api

at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)oracle

at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)app

at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)maven

at scala.Option.getOrElse(Option.scala:120)ide

at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)

at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)

at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)

at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)

at scala.Option.getOrElse(Option.scala:120)

at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)

at org.apache.spark.SparkContext.runJob(SparkContext.scala:1517)

at org.apache.spark.rdd.RDD.count(RDD.scala:1006)

at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:22)

at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:27)

at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:29)

at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:31)

at $iwC$$iwC$$iwC$$iwC.<init>(<console>:33)

at $iwC$$iwC$$iwC.<init>(<console>:35)

at $iwC$$iwC.<init>(<console>:37)

at $iwC.<init>(<console>:39)

at <init>(<console>:41)

at .<init>(<console>:45)

at .<clinit>(<console>)

at .<init>(<console>:7)

at .<clinit>(<console>)

at $print(<console>)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:606)

at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)

at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1338)

at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)

at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)

at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)

at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:856)

at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:901)

at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:813)

at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:656)

at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:664)

at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:669)

at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:996)

at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944)

at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:944)

at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)

at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:944)

at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1058)

at org.apache.spark.repl.Main$.main(Main.scala:31)

at org.apache.spark.repl.Main.main(Main.scala)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:606)

at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)

at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)

at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)

at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)

at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Caused by: java.lang.reflect.InvocationTargetException

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:606)

at org.apache.hadoop.util.ReflectionUtils.setJobConf(ReflectionUtils.java:106)

... 61 more

Caused by: java.lang.IllegalArgumentException: Compression codec com.hadoop.compression.lzo.LzoCodec not found.

at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:135)

at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:175)

at org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:45)

... 66 more

Caused by: java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec not found

at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2018)

at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:128)

... 68 more

 

緣由:

  這是由於在hadoop core-site.xml mapred-site.xml中開啓了壓縮,而且壓縮式lzo的。這就致使寫入/上傳到hdfs的文件自動被壓縮爲lzo了。這個時候你使用sc.textFile讀取文件時就會報告一堆lzo找不到的異常。

  最根本的緣由就是spark找不到hadoop-lzo.jar lzo本地庫,你須要確保集羣中每個機器上都安裝了lzolzophadoop-lzo.jar,而後修改spark-env.sh,添加SPARK_LIBRARY_PATHSPARK_CLASSPATH,其中SPARK_LIBRARY_PATH指向lzo本地庫,SPARK_CLASSPATH指向hadoop-lzo.jar。若是你從spark-shell中進行測試,在啓動spark-shell時須要配置--jars--driver-library-path

  對於cdh集羣,hadoop-lzo已經安裝了。對於apache集羣,你須要本身手動安裝

解決辦法:

  • 在集羣中的每一臺機器上安裝hadoop-lzo包。

     通常來講須要在集羣中每臺機器執行以下步驟:

     安裝lzo lib

     安裝lzop 可執行程序

     安裝twitterhadoop-lzo.jar

     

  • spark-env.sh中添加SPARK_LIBRARY_PATHSPARK_CLASSPATH變量

  添加以下變量:

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cloudera/parcels/HADOOP_LZO/lib/hadoop/lib/native/*

export SPARK_LIBRARY_PATH=$SPARK_LIBRARY_PATH:/opt/cloudera/parcels/HADOOP_LZO/lib/hadoop/lib/native

SPARK_CLASSPATH=/opt/cloudera/parcels/HADOOP_LZO/lib/hadoop/lib:$SPARK_CLASSPATH

 

  • 而後按照以下方式啓用spark-shell,須要注意的是,無論你以local模式仍是master模式,都須要加上以下的配置

  ./spark-shell  --jars hadoop-lzo.jar的全路徑  --driver-library-path hadoop-lzonative目錄

  這個時候,你就能夠在spark-shell中使用textFile讀取hdfs數據了。

譬如,你能夠以下啓動spark-shell

./bin/spark-shell --jars /opt/cloudera/parcels/HADOOP_LZO/lib/hadoop/lib/hadoop-lzo.jar --driver-library-path /opt/cloudera/parcels/HADOOP_LZO/lib/hadoop/lib/native^C

 

 

 

 

 

maven pom.xml 中的scala 版本應該和spark版本一直:

  若是pom.xml scala版本是2.11

  <properties>

    <scala.version>2.11.4</scala.version>

  </properties>

 那麼 spark也應該是2.11的:

     <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10 -->

    <dependency>

      <groupId>org.apache.spark</groupId>

      <artifactId>spark-core_2.11</artifactId>

      <version>1.6.1</version>

    </dependency>

 

一樣,在使用scalatestscalactic時也是如此。

 

問題描述2

  

  maven pom.xml 中的scala 版本應該和spark版本一直:

  若是pom.xml scala版本是2.11

  <properties>

    <scala.version>2.11.4</scala.version>

  </properties>

 那麼 spark也應該是2.11的:

     <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core_2.10 -->

    <dependency>

      <groupId>org.apache.spark</groupId>

      <artifactId>spark-core_2.11</artifactId>

      <version>1.6.1</version>

    </dependency>

 

一樣,在使用scalatestscalactic時也是如此。

  

問題3.比較器異常

Caused by: java.lang.IllegalArgumentException: Comparison method violates its general contract!

at java.util.TimSort.mergeHi(TimSort.java:899)

at java.util.TimSort.mergeAt(TimSort.java:516)

at java.util.TimSort.mergeCollapse(TimSort.java:441)

at java.util.TimSort.sort(TimSort.java:245)

at java.util.Arrays.sort(Arrays.java:1438)

at scala.collection.SeqLike$class.sorted(SeqLike.scala:618)

at scala.collection.mutable.ArrayOps$ofRef.sorted(ArrayOps.scala:186)

at scala.collection.SeqLike$class.sortWith(SeqLike.scala:575)

at scala.collection.mutable.ArrayOps$ofRef.sortWith(ArrayOps.scala:186)

at bitnei.utils.Utils$.sortBy(Utils.scala:116)

at FsmTest$$anonfun$1$$anonfun$apply$mcV$sp$4.apply(FsmTest.scala:30)

... 54 more

 

 

出現這個問題的緣由,是在排序時,兩個相等的值沒有返回true。源代碼以下:

def compareDate(dateA:String,dateB:String):Boolean={
  val dateFormat=new java.text.SimpleDateFormat("yyyyMMddHHmmss")
  val timeA=dateFormat.parse(dateA).getTime
  val timeB=dateFormat.parse(dateB).getTime

  timeA<=timeB
}

 

將上面的<=換爲<便可。

 

 

 

 

 

 

 

問題4 spark-jobserver maven 問題

 


<dependency>
  <groupId>spark.jobserver</groupId>
  <artifactId>job-server-api_2.11</artifactId>
  <version>0.6.2</version>
</dependency>

 

 

如上圖,再引用job-server-api_2.11時,maven找不到某些jar的依賴,緣由是默認中央倉庫不全,須要添加其餘中央倉庫,以下:

</pluginRepository>
  <pluginRepository>
    <id>dl-bintray.com/</id>
    <name>Scala-Tools Maven2 Repository</name>
    <url>https://dl.bintray.com/spark-jobserver/maven/</url>
  </pluginRepository>

<repository>
  <id>dl-bintray.com/</id>
  <name>Scala-Tools Maven2 Repository</name>
  <url>https://dl.bintray.com/spark-jobserver/maven/</url>
</repository>

 

 

而後就ok了。

 

 

問題5 Spark讀取hdfs數據,nameservice 沒法識別

java.lang.IllegalArgumentException: java.net.UnknownHostException: nameservice1

at org.apache.hadoop.security.SecurityUtil.buildTokenService(SecurityUtil.java:414)

at org.apache.hadoop.hdfs.NameNodeProxies.createNonHAProxy(NameNodeProxies.java:164)

at org.apache.hadoop.hdfs.NameNodeProxies.createProxy(NameNodeProxies.java:129)

at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:448)

at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:410)

at org.apache.hadoop.hdfs.DistributedFileSystem.initialize(DistributedFileSystem.java:128)

at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2308)

 

 

解決方法:

spark-default.sh中添加以下內容:
spark.files=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

 

也就是說,將core-site.xmlhdfs-site.xml添加到spark.files

 

問題6

 org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /tmp/vehicle/result/mid/2016/09/13/_temporary/0/_temporary/attempt_201611121515_0001_m_000005_188/part-00005 could only be replicated to 0 nodes instead of minReplication (=1).  There are 6 datanode(s) running and no node(s) are excluded in this operation.

at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1541)

at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:3289)

at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:668)

at org.apache.hadoop.hdfs.server.namenode.AuthorizationProviderProxyClientProtocol.addBlock(AuthorizationProviderProxyClientProtocol.java:212)

at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:483)

at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)

at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:619)

at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1060)

at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2044)

at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2040)

at java.security.AccessController.doPrivileged(Native Method)

at javax.security.auth.Subject.doAs(Subject.java:415)

at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1671)

at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2038)

 

at org.apache.hadoop.ipc.Client.call(Client.java:1468)

at org.apache.hadoop.ipc.Client.call(Client.java:1399)

at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)

at com.sun.proxy.$Proxy13.addBlock(Unknown Source)

at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.addBlock(ClientNamenodeProtocolTranslatorPB.java:399)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:606)

at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)

at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)

at com.sun.proxy.$Proxy14.addBlock(Unknown Source)

at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.locateFollowingBlock(DFSOutputStream.java:1532)

at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.nextBlockOutputStream(DFSOutputStream.java:1349)

at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:588)

 

 

 

Hdfs磁盤空間滿了

 

 

 

 

 

JDBC問題

1.maven中引入ojdbc方式:

首先將ojdbc安裝到本地倉庫

C:\Users\franciswang>mvn install:install-file -Dfile=d:/spark/lib/ojdbc6-11.2.0.3.0.jar -DgroupId=com.oracle -DartifactId=ojdbc6 -Dversion=11.2.0 -Dpackaging=jar

 

接下來在porm中引用:


<dependency>
  <groupId>com.oracle</groupId>
  <artifactId>ojdbc6</artifactId>
  <version>11.2.0</version>
</dependency>

 

 

當將項目打包到linuxspark執行時,總提示Cannot find or load oracle.jdbc.driver.OracleDriverojdbc.jar放到classpath,項目的libjdk/jre/lib下都沒有用,最後將其放到

Jdk/jre/lib/ext/下才好使。參考地址:

http://stackoverflow.com/questions/17701610/cannot-find-or-load-oracle-jdbc-driver-oracledriver

相關文章
相關標籤/搜索