JavaShuo
欄目
標籤
深度學習 學習筆記二
時間 2021-05-29
標籤
強化學習 筆記
简体版
原文
原文鏈接
理論: 1.線性判別函數和決策邊界 線性判別函數 若分屬於ω1,ω2的兩類模式可用一方程d(x) =0來劃分,那麼稱d(x) 爲判別函數,或稱判決函數、決策函數。 一個線性分類模型(Linear Classification Model)或線性分類器(Linear Classifier),是由一個(或多個)線性的判別函數f(x,w)= wTx+b和非線性的決策函數g(·)組成。 兩類分類(Binar
>>阅读原文<<
相關文章
1.
深度學習筆記(二)
2.
深度學習 筆記二
3.
深度學習筆記【二】
4.
深度學習基礎之深度學習概述(二)——慕課學習筆記
5.
深度學習 學習筆記
6.
深度學習學習筆記(一)
7.
深度學習小白學習筆記
8.
深度學習-遷移學習筆記
9.
深度學習 學習筆記四
10.
【深度學習】Pytorch學習筆記(一)
更多相關文章...
•
您已經學習了 XML Schema,下一步學習什麼呢?
-
XML Schema 教程
•
我們已經學習了 SQL,下一步學習什麼呢?
-
SQL 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
Kotlin學習(二)基本類型
相關標籤/搜索
深度學習
學習筆記
深度學習筆記
深度學習 CNN
Python深度學習
Python 深度學習
深度學習篇
Pytorch 深度學習
深度學習——BNN
深度學習2
PHP教程
Thymeleaf 教程
Spring教程
學習路線
初學者
調度
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0備份還原
2.
openstack
3.
深入探討OSPF環路問題
4.
代碼倉庫-分支策略
5.
Admin-Framework(八)系統授權介紹
6.
Sketch教程|如何訪問組件視圖?
7.
問問自己,你真的會用防抖和節流麼????
8.
[圖]微軟Office Access應用終於啓用全新圖標 Publisher已在路上
9.
微軟準備淘汰 SHA-1
10.
微軟準備淘汰 SHA-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
深度學習筆記(二)
2.
深度學習 筆記二
3.
深度學習筆記【二】
4.
深度學習基礎之深度學習概述(二)——慕課學習筆記
5.
深度學習 學習筆記
6.
深度學習學習筆記(一)
7.
深度學習小白學習筆記
8.
深度學習-遷移學習筆記
9.
深度學習 學習筆記四
10.
【深度學習】Pytorch學習筆記(一)
>>更多相關文章<<