final 關鍵字
-方法:不能被子類重寫(override)
-變量:不能被修改
-類:不能夠被繼承,派生子類java
finally 關鍵字
與try/catch語句配合使用,即便有異常拋出。 try 語句塊執行以後,若是有異常,執行catch,以後會執行finally語句塊。若是try有return語句,執行完finally後,再return。算法
finalize方法
此方法是Object類的方法,垃圾回收器回收對象前,若是對象重寫的此方法會被調用,主要是作一些對象銷燬前的清理動做,通常不建議重寫。編程
重載和重寫
-重載(overloading)指方法名相同,參數不一樣,返回值不影響重載。
-重寫(overriding)與父類的方法名相同,函數簽名相同設計模式
接口的意義
規範、擴展、回調(回調是能夠靈活的讓類與類之間創建特定的關係,就像手機中的網絡,特別神奇)數組
抽象類的意義
變與不變分開。變化的爲抽象方法,交給子類實現。不變的放在父類統一實現。安全
內部類
-匿名內部類 (new 出來的對象)
-靜態內部類 與外圍類沒有關係
-定義內部類 實例須要與外部類this綁定網絡
定義內部類從某種意義上實現了多繼承,便可以繼承父類,同時可使用外圍類的屬性和方法。數據結構
java 引用類型 多線程
匿名內部類的做用併發
父類的靜態方法可否被子類重寫,爲何?
不能
子類繼承父類後,用相同的靜態方法和非靜態方法,這時非靜態方法覆蓋父類中的方法(即方法重寫),父類的該靜態方法被隱藏(若是對象是父類則調用該隱藏的方法),另外子類可繼承父類的靜態與非靜態方法,至於方法重載我以爲它其中一要素就是在同一類中,不能說父類中的什麼方法與子類裏的什麼方法是方法重載的體現
Java中==和equals的區別,equals和hashCode的區別
\==是運算符,用於比較兩個變量是否相等。
equals,是Objec類的方法,用於比較兩個對象是否相等,默認Object類的equals方法是比較兩個對象的地址,跟\==的結果同樣。若是對象用\==比較,比較內存地址是否相同。
若是兩個對象根據equals()方法比較是相等的,那麼調用這兩個對象中任意一個對象的hashCode方法都必須產生一樣的整數結果。
若是兩個對象根據equals()方法比較是不相等的,那麼調用這兩個對象中任意一個對象的hashCode方法,則不必定要產生相同的整數結果
將對象放入到集合中時,首先判斷要放入對象的hashcode值與集合中的任意一個元素的hashcode值是否相等,若是不相等直接將該對象放入集合中。若是hashcode值相等,而後再經過equals方法判斷要放入對象與集合中的任意一個對象是否相等,若是equals判斷不相等,直接將該元素放入到集合中,不然不放入。
回過來講get的時候,HashMap也先調key.hashCode()算出數組下標,而後看equals若是是true就是找到了,因此就涉及了equals。
覆蓋equals時總要覆蓋hashCode
一個很常見的錯誤根源在於沒有覆蓋hashCode方法。在每一個覆蓋了equals方法的類中,也必須覆蓋hashCode方法。若是不這樣作的話,就會違反Object.hashCode的通用約定,從而致使該類沒法結合全部基於散列的集合一塊兒正常運做,這樣的集合包括HashMap、HashSet和Hashtable。
string stringbuffer stringbuilder 區別
String 是不可變的對象, 所以在每次對 String 類型進行改變的時候其實都等同於生成了一個新的 String 對象,而後將指針指向新的 String 對象,因此常常改變內容的字符串最好不要用String ,由於每次生成對象都會對系統性能產生影響,特別當內存中無引用對象多了之後,JVM 的 GC 就會開始工做,那速度是必定會至關慢的。
StringBuffer 對象自己進行操做,而不是生成新的對象,再改變對象引用。因此在通常狀況下咱們推薦使用 StringBuffer ,特別是字符串對象常常改變的狀況下。
Java.lang.StringBuffer線程安全的可變字符序列。一個相似於 String 的字符串緩衝區,但不能修改。雖然在任意時間點上它都包含某種特定的字符序列,但經過某些方法調用能夠改變該序列的長度和內容。
java.lang.StringBuilder一個可變的字符序列是5.0新增的。此類提供一個與 StringBuffer 兼容的 API,但不保證同步。該類被設計用做 StringBuffer 的一個簡易替換,用在字符串緩衝區被單個線程使用的時候(這種狀況很廣泛)。若是可能,建議優先採用該類,由於在大多數實現中,它比 StringBuffer 要快。二者的方法基本相同
大部分狀況 StringBuidler > StringBuffer > String
實例一個對象執行的順序:靜態代碼塊->main方法-構造代碼塊->構造方法
抽象類和接口的區別
進程和線程的區別
簡而言之,一個程序至少有一個進程,一個進程至少有一個線程。
線程的劃分尺度小於進程,使得多線程程序的併發性高。
進程在執行過程當中擁有獨立的內存單元,而多個線程共享內存,從而極大地提升了程序的運行效率。
線程在執行過程當中與進程仍是有區別的。每一個獨立的線程有一個程序運行的入口、順序執行序列和程序的出口。可是線程不可以獨立執行,必須依存在應用程序中,由應用程序提供多個線程執行控制。
從邏輯角度來看,多線程的意義在於一個應用程序中,有多個執行部分能夠同時執行。但操做系統並無將多個線程看作多個獨立的應用,來實現進程的調度和管理以及資源分配。這就是進程和線程的重要區別。
-進程是具備必定獨立功能的程序關於某個數據集合上的一次運行活動,進程是系統進行資源分配和調度的一個獨立單位.
線程是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位.線程本身基本上不擁有系統資源,只擁有一點在運行中必不可少的資源(如程序計數器,一組寄存器和棧),可是它可與同屬一個進程的其餘的線程共享進程所擁有的所有資源.
一個線程能夠建立和撤銷另外一個線程;同一個進程中的多個線程之間能夠併發執行.
進程和線程的主要差異在於它們是不一樣的操做系統資源管理方式。進程有獨立的地址空間,一個進程崩潰後,在保護模式下不會對其它進程產生影響,而線程只是一個進程中的不一樣執行路徑。線程有本身的堆棧和局部變量,但線程之間沒有單獨的地址空間,一個線程死掉就等於整個進程死掉,因此多進程的程序要比多線程的程序健壯,但在進程切換時,耗費資源較大,效率要差一些。但對於一些要求同時進行而且又要共享某些變量的併發操做,只能用線程,不能用進程。若是有興趣深刻的話,我建議大家看看《現代操做系統》或者《操做系統的設計與實現》。對就個問題說得比較清楚。
java多態
面向對象的三大特性:封裝、繼承、多態。從必定角度來看,封裝和繼承幾乎都是爲多態而準備的。這是咱們最後一個概念,也是最重要的知識點。
-多態的定義:指容許不一樣類的對象對同一消息作出響應。即同一消息能夠根據發送對象的不一樣而採用多種不一樣的行爲方式。(發送消息就是函數調用)
-實現多態的技術稱爲:動態綁定(dynamic binding),是指在執行期間判斷所引用對象的實 際類型,根據其實際的類型調用其相應的方法。
-多態的做用:消除類型之間的耦合關係。
-現實中,關於多態的例子不勝枚舉。比方說按下 F1 鍵這個動做,若是當前在 Flash 界面下彈出的就是 AS 3 的幫助文檔;若是當前在 Word 下彈出的就是 Word 幫助;在 Windows 下彈出的就是 Windows 幫助和支持。同一個事件發生在不一樣的對象上會產生不一樣的結果。 下面是多態存在的三個必要條件,要求你們作夢時都能背出來!
多態存在的三個必要條件 1、要有繼承; 2、要有重寫; 3、父類引用指向子類對象。
多態的好處:
1.可替換性(substitutability)。多態對已存在代碼具備可替換性。例如,多態對圓Circle類工做,對其餘任何圓形幾何體,如圓環,也一樣工做。
2.可擴充性(extensibility)。多態對代碼具備可擴充性。增長新的子類不影響已存在類的多態性、繼承性,以及其餘特性的運行和操做。實際上新加子類更容易得到多態功能。例如,在實現了圓錐、半圓錐以及半球體的多態基礎上,很容易增添球體類的多態性。
3.接口性(interface-ability)。多態是超類經過方法簽名,向子類提供了一個共同接口,由子類來完善或者覆蓋它而實現的。如圖8.3 所示。圖中超類Shape規定了兩個實現多態的接口方法,computeArea()以及computeVolume()。子類,如Circle和Sphere爲了實現多態,完善或者覆蓋這兩個接口方法。
4.靈活性(flexibility)。它在應用中體現了靈活多樣的操做,提升了使用效率。
5.簡化性(simplicity)。多態簡化對應用軟件的代碼編寫和修改過程,尤爲在處理大量對象的運算和操做時,這個特色尤其突出和重要。
Java中多態的實現方式:接口實現,繼承父類進行方法重寫,同一個類中進行方法重載。
什麼致使線程阻塞
爲了解決對共享存儲區的訪問衝突,Java 引入了同步機制,如今讓咱們來考察多個線程對共享資源的訪問,顯然同步機制已經不夠了,由於在任意時刻所要求的資源不必定已經準備好了被訪問,反過來,同一時刻準備好了的資源也可能不止一個。爲了解決這種狀況下的訪問控制問題,Java 引入了對阻塞機制的支持.
阻塞指的是暫停一個線程的執行以等待某個條件發生(如某資源就緒),學過操做系統的同窗對它必定已經很熟悉了。Java 提供了大量方法來支持阻塞,下面讓咱們逐一分析。
sleep() 方法:sleep() 容許 指定以毫秒爲單位的一段時間做爲參數,它使得線程在指定的時間內進入阻塞狀態,不能獲得CPU 時間,指定的時間一過,線程從新進入可執行狀態。 典型地,sleep() 被用在等待某個資源就緒的情形:測試發現條件不知足後,讓線程阻塞一段時間後從新測試,直到條件知足爲止。
suspend() 和 resume() 方法:兩個方法配套使用,suspend()使得線程進入阻塞狀態,而且不會自動恢復,必須其對應的resume() 被調用,才能使得線程從新進入可執行狀態。典型地,suspend() 和 resume() 被用在等待另外一個線程產生的結果的情形:測試發現結果尚未產生後,讓線程阻塞,另外一個線程產生告終果後,調用 resume() 使其恢復。
yield() 方法:yield() 使得線程放棄當前分得的 CPU 時間,可是不使線程阻塞,即線程仍處於可執行狀態,隨時可能再次分得 CPU 時間。調用 yield() 的效果等價於調度程序認爲該線程已執行了足夠的時間從而轉到另外一個線程.
wait() 和 notify() 方法:兩個方法配套使用,wait() 使得線程進入阻塞狀態,它有兩種形式,一種容許 指定以毫秒爲單位的一段時間做爲參數,另外一種沒有參數,前者當對應的 notify() 被調用或者超出指定時間時線程從新進入可執行狀態,後者則必須對應的 notify() 被調用.
初看起來它們與 suspend() 和 resume() 方法對沒有什麼分別,可是事實上它們是大相徑庭的。區別的核心在於,前面敘述的全部方法,阻塞時都不會釋放佔用的鎖(若是佔用了的話),而這一對方法則相反。
上述的核心區別致使了一系列的細節上的區別。
首先,前面敘述的全部方法都隸屬於 Thread 類,可是這一對卻直接隸屬於 Object 類,也就是說,全部對象都擁有這一對方法。初看起來這十分難以想象,可是實際上倒是很天然的,由於這一對方法阻塞時要釋放佔用的鎖,而鎖是任何對象都具備的,調用任意對象的 wait() 方法致使線程阻塞,而且該對象上的鎖被釋放。而調用 任意對象的notify()方法則致使因調用該對象的 wait() 方法而阻塞的線程中隨機選擇的一個解除阻塞(但要等到得到鎖後才真正可執行)。
其次,前面敘述的全部方法均可在任何位置調用,可是這一對方法卻必須在 synchronized 方法或塊中調用,理由也很簡單,只有在synchronized 方法或塊中當前線程才佔有鎖,纔有鎖能夠釋放。一樣的道理,調用這一對方法的對象上的鎖必須爲當前線程所擁有,這樣纔有鎖能夠釋放。所以,這一對方法調用必須放置在這樣的 synchronized 方法或塊中,該方法或塊的上鎖對象就是調用這一對方法的對象。若不知足這一條件,則程序雖然仍能編譯,但在運行時會出現IllegalMonitorStateException 異常。
wait() 和 notify() 方法的上述特性決定了它們常常和synchronized 方法或塊一塊兒使用,將它們和操做系統的進程間通訊機制做一個比較就會發現它們的類似性:synchronized方法或塊提供了相似於操做系統原語的功能,它們的執行不會受到多線程機制的干擾,而這一對方法則至關於 block 和wakeup 原語(這一對方法均聲明爲 synchronized)。它們的結合使得咱們能夠實現操做系統上一系列精妙的進程間通訊的算法(如信號量算法),並用於解決各類複雜的線程間通訊問題。
關於 wait() 和 notify() 方法最後再說明兩點:
第一:調用 notify() 方法致使解除阻塞的線程是從因調用該對象的 wait() 方法而阻塞的線程中隨機選取的,咱們沒法預料哪個線程將會被選擇,因此編程時要特別當心,避免因這種不肯定性而產生問題。
第二:除了 notify(),還有一個方法 notifyAll() 也可起到相似做用,惟一的區別在於,調用 notifyAll() 方法將把因調用該對象的 wait() 方法而阻塞的全部線程一次性所有解除阻塞。固然,只有得到鎖的那一個線程才能進入可執行狀態。
談到阻塞,就不能不談一談死鎖,略一分析就能發現,suspend() 方法和不指定超時期限的 wait() 方法的調用均可能產生死鎖。遺憾的是,Java 並不在語言級別上支持死鎖的避免,咱們在編程中必須當心地避免死鎖。
以上咱們對 Java 中實現線程阻塞的各類方法做了一番分析,咱們重點分析了 wait() 和 notify() 方法,由於它們的功能最強大,使用也最靈活,可是這也致使了它們的效率較低,較容易出錯。實際使用中咱們應該靈活使用各類方法,以便更好地達到咱們的目的。
ArrayList:可動態調整大小的集合,底層依靠數組儲存。不支持多線程。是用來替代Vector。
Vecter:與ArrayList,支持同步(synchronised)
HashMap:應用普遍。
HashMap概述: HashMap是基於哈希表的Map接口的非同步實現。此實現提供全部可選的映射操做,並容許使用null值和null鍵。此類不保證映射的順序,特別是它不保證該順序恆久不變。
HashMap的數據結構: 在java編程語言中,最基本的結構就是兩種,一個是數組,另一個是模擬指針(引用),全部的數據結構均可以用這兩個基本結構來構造的,HashMap也不例外。HashMap其實是一個「鏈表散列」的數據結構,即數組和鏈表的結合體。
HashMap的實現原理(很重要)
HashMap源碼解析
HashMap概述: HashMap是基於哈希表的Map接口的非同步實現。此實現提供全部可選的映射操做,並容許使用null值和null鍵。此類不保證映射的順序,特別是它不保證該順序恆久不變。
HashMap的數據結構: 在java編程語言中,最基本的結構就是兩種,一個是數組,另一個是模擬指針(引用),全部的數據結構均可以用這兩個基本結構來構造的,HashMap也不例外。HashMap其實是一個「鏈表散列」的數據結構,即數組和鏈表的結合體。
HashMap與HashTable 的區別
HashTable 線程安全 key和value都不能爲null
HashMap 非線程安全,key和value能夠爲null,數組內索引更高效(使用hash & lengh-1取模)
反射:
1.運行是得到類的方法和屬性、接口信息。
2.創造實例
3.經過字段引用直接獲取和設置字段,無視訪問修飾符。
從繼承的角度看,將構造函數聲名爲私有,有何做用:能夠確保類不能夠在外部實例化,只能使用公共靜態方法創造實例。單例模式就是。
經常使用的設計模式:單例模式,建造者,適配器,策略模式。