Java內存組成介紹:堆(Heap)和非堆(Non-heap)內存html
按照官方的說法:「Java 虛擬機具備一個堆,堆是運行時數據區域,全部類實例和數組的內存均今後處分配。堆是在 Java 虛擬機啓動時建立的。」「在JVM中堆以外的內存稱爲非堆內存(Non-heap memory)」。能夠看出JVM主要管理兩種類型的內存:堆和非堆。簡單來講堆就是Java代碼可及的內存,是留給開發人員使用的;非堆就是JVM留給 本身用的,因此方法區、JVM內部處理或優化所需的內存(如JIT編譯後的代碼緩存)、每一個類結構(如運行時常數池、字段和方法數據)以及方法和構造方法 的代碼都在非堆內存中。java
組成圖linux
堆內存分配程序員
JVM初始分配的內存由-Xms指定,默認是物理內存的1/64;JVM最大分配的內存由-Xmx指 定,默認是物理內存的1/4。默認空餘堆內存小於40%時,JVM就會增大堆直到-Xmx的最大限制;空餘堆內存大於70%時,JVM會減小堆直到 -Xms的最小限制。所以服務器通常設置-Xms、-Xmx相等以免在每次GC 後調整堆的大小。對象的堆內存由稱爲垃圾回收器的自動內存管理系統回收。web
組成 | 詳解 |
---|---|
Young Generation | 即圖中的Eden + From Space + To Space |
Eden算法 |
存放新生的對象 |
Survivor Spaceapi |
有兩個,存放每次垃圾回收後存活的對象 |
Old Generation | Tenured Generation 即圖中的Old Space 主要存放應用程序中生命週期長的存活對象 |
非堆內存分配
JVM使用-XX:PermSize設置非堆內存初始值,默認是物理內存的1/64;由XX:MaxPermSize設置最大非堆內存的大小,默認是物理內存的1/4。數組
組成 | 詳解 |
---|---|
Permanent Generation | 保存虛擬機本身的靜態(refective)數據 主要存放加載的Class類級別靜態對象如class自己,method,field等等 permanent generation空間不足會引起full GC(詳見HotSpot VM GC種類) |
Code Cache | 用於編譯和保存本地代碼(native code)的內存 JVM內部處理或優化 |
JVM內存限制(最大值)緩存
JVM內存的最大值跟操做系統有很大的關係。簡單的說就32位處理器雖然 可控內存空間有4GB,可是具體的操做系統會給一個限制,這個限制通常是2GB-3GB(通常來講Windows系統下爲1.5G-2G,Linux系統 下爲2G-3G),而64bit以上的處理器就不會有限制了。服務器
JVM裏的GC(Garbage Collection)的算法有不少種,如標記清除收集器,壓縮收集器,分代收集器等等,詳見HotSpot VM GC 的種類
如今比較經常使用的是分代收集(generational collection,也是SUN VM使用的,J2SE1.2以後引入),即將內存分爲幾個區域,將不一樣生命週期的對象放在不一樣區域裏:young generation,tenured generation和permanet generation。絕大部分的objec被分配在young generation(生命週期短),而且大部分的object在這裏die。當young generation滿了以後,將引起minor collection(YGC)。在minor collection後存活的object會被移動到tenured generation(生命週期比較長)。最後,tenured generation滿以後觸發major collection。major collection(Full gc)會觸發整個heap的回收,包括回收young generation。permanet generation區域比較穩定,主要存放classloader信息。
young generation有eden、2個survivor 區域組成。其中一個survivor區域一直是空的,是eden區域和另外一個survivor區域在下一次copy collection後活着的objecy的目的地。object在survivo區域被複制直到轉移到tenured區。
咱們要儘可能減小 Full gc 的次數(tenured generation 通常比較大,收集的時間較長,頻繁的Full gc會致使應用的性能收到嚴重的影響)。
無論是YGC仍是Full GC,GC過程當中都會對致使程序運行中中斷,正確的選擇不一樣的GC策略,調整JVM、GC的參數,能夠極大的減小因爲GC工做,而致使的程序運行中斷方面的問題,進而適當的提升Java程序的工做效率。可是調整GC是以個極爲複雜的過程,因爲各個程序具有不一樣的特色,如:web和GUI程序就有很大區別(Web能夠適當的停頓,但GUI停頓是客戶沒法接受的),並且因爲跑在各個機器上的配置不一樣(主要cup個數,內存不一樣),因此使用的GC種類也會不一樣(如何選擇見GC種類及如何選擇)。本文將注重介紹JVM、GC的一些重要參數的設置來提升系統的性能。
JVM內存組成及GC相關內容請見以前的文章:JVM內存組成GC策略&內存申請。
JVM參數的含義 實例見實例分析
參數名稱 | 含義 | 默認值 | |
-Xms | 初始堆大小 | 物理內存的1/64(<1GB) | 默認(MinHeapFreeRatio參數能夠調整)空餘堆內存小於40%時,JVM就會增大堆直到-Xmx的最大限制. |
-Xmx | 最大堆大小 | 物理內存的1/4(<1GB) | 默認(MaxHeapFreeRatio參數能夠調整)空餘堆內存大於70%時,JVM會減小堆直到 -Xms的最小限制 |
-Xmn | 年輕代大小(1.4or lator) | 注意:此處的大小是(eden+ 2 survivor space).與jmap -heap中顯示的New gen是不一樣的。 整個堆大小=年輕代大小 + 年老代大小 + 持久代大小. 增大年輕代後,將會減少年老代大小.此值對系統性能影響較大,Sun官方推薦配置爲整個堆的3/8 |
|
-XX:NewSize | 設置年輕代大小(for 1.3/1.4) | ||
-XX:MaxNewSize | 年輕代最大值(for 1.3/1.4) | ||
-XX:PermSize | 設置持久代(perm gen)初始值 | 物理內存的1/64 | |
-XX:MaxPermSize | 設置持久代最大值 | 物理內存的1/4 | |
-Xss | 每一個線程的堆棧大小 | JDK5.0之後每一個線程堆棧大小爲1M,之前每一個線程堆棧大小爲256K.更具應用的線程所需內存大小進行 調整.在相同物理內存下,減少這個值能生成更多的線程.可是操做系統對一個進程內的線程數仍是有限制的,不能無限生成,經驗值在3000~5000左右 通常小的應用, 若是棧不是很深, 應該是128k夠用的 大的應用建議使用256k。這個選項對性能影響比較大,須要嚴格的測試。(校長) 和threadstacksize選項解釋很相似,官方文檔彷佛沒有解釋,在論壇中有這樣一句話:"」 -Xss is translated in a VM flag named ThreadStackSize」 通常設置這個值就能夠了。 |
|
-XX:ThreadStackSize | Thread Stack Size | (0 means use default stack size) [Sparc: 512; Solaris x86: 320 (was 256 prior in 5.0 and earlier); Sparc 64 bit: 1024; Linux amd64: 1024 (was 0 in 5.0 and earlier); all others 0.] | |
-XX:NewRatio | 年輕代(包括Eden和兩個Survivor區)與年老代的比值(除去持久代) | -XX:NewRatio=4表示年輕代與年老代所佔比值爲1:4,年輕代佔整個堆棧的1/5 Xms=Xmx而且設置了Xmn的狀況下,該參數不須要進行設置。 |
|
-XX:SurvivorRatio | Eden區與Survivor區的大小比值 | 設置爲8,則兩個Survivor區與一個Eden區的比值爲2:8,一個Survivor區佔整個年輕代的1/10 | |
-XX:LargePageSizeInBytes | 內存頁的大小不可設置過大, 會影響Perm的大小 | =128m | |
-XX:+UseFastAccessorMethods | 原始類型的快速優化 | ||
-XX:+DisableExplicitGC | 關閉System.gc() | 這個參數須要嚴格的測試 | |
-XX:MaxTenuringThreshold | 垃圾最大年齡 | 若是設置爲0的話,則年輕代對象不通過Survivor區,直接進入年老代. 對於年老代比較多的應用,能夠提升效率.若是將此值設置爲一個較大值,則年輕代對象會在Survivor區進行屢次複製,這樣能夠增長對象再年輕代的存活 時間,增長在年輕代即被回收的機率 該參數只有在串行GC時纔有效. |
|
-XX:+AggressiveOpts | 加快編譯 | ||
-XX:+UseBiasedLocking | 鎖機制的性能改善 | ||
-Xnoclassgc | 禁用垃圾回收 | ||
-XX:SoftRefLRUPolicyMSPerMB | 每兆堆空閒空間中SoftReference的存活時間 | 1s | softly reachable objects will remain alive for some amount of time after the last time they were referenced. The default value is one second of lifetime per free megabyte in the heap |
-XX:PretenureSizeThreshold | 對象超過多大是直接在舊生代分配 | 0 | 單位字節 新生代採用Parallel Scavenge GC時無效 另外一種直接在舊生代分配的狀況是大的數組對象,且數組中無外部引用對象. |
-XX:TLABWasteTargetPercent | TLAB佔eden區的百分比 | 1% | |
-XX:+CollectGen0First | FullGC時是否先YGC | false |
並行收集器相關參數
-XX:+UseParallelGC | Full GC採用parallel MSC (此項待驗證) |
選擇垃圾收集器爲並行收集器.此配置僅對年輕代有效.即上述配置下,年輕代使用併發收集,而年老代仍舊使用串行收集.(此項待驗證) |
|
-XX:+UseParNewGC | 設置年輕代爲並行收集 | 可與CMS收集同時使用 JDK5.0以上,JVM會根據系統配置自行設置,因此無需再設置此值 |
|
-XX:ParallelGCThreads | 並行收集器的線程數 | 此值最好配置與處理器數目相等 一樣適用於CMS | |
-XX:+UseParallelOldGC | 年老代垃圾收集方式爲並行收集(Parallel Compacting) | 這個是JAVA 6出現的參數選項 | |
-XX:MaxGCPauseMillis | 每次年輕代垃圾回收的最長時間(最大暫停時間) | 若是沒法知足此時間,JVM會自動調全年輕代大小,以知足此值. | |
-XX:+UseAdaptiveSizePolicy | 自動選擇年輕代區大小和相應的Survivor區比例 | 設置此選項後,並行收集器會自動選擇年輕代區大小和相應的Survivor區比例,以達到目標系統規定的最低相應時間或者收集頻率等,此值建議使用並行收集器時,一直打開. | |
-XX:GCTimeRatio | 設置垃圾回收時間佔程序運行時間的百分比 | 公式爲1/(1+n) | |
-XX:+ScavengeBeforeFullGC | Full GC前調用YGC | true | Do young generation GC prior to a full GC. (Introduced in 1.4.1.) |
CMS相關參數
-XX:+UseConcMarkSweepGC | 使用CMS內存收集 | 測試中配置這個之後,-XX:NewRatio=4的配置失效了,緣由不明.因此,此時年輕代大小最好用-Xmn設置.??? | |
-XX:+AggressiveHeap | 試圖是使用大量的物理內存 長時間大內存使用的優化,能檢查計算資源(內存, 處理器數量) 至少須要256MB內存 大量的CPU/內存, (在1.4.1在4CPU的機器上已經顯示有提高) |
||
-XX:CMSFullGCsBeforeCompaction | 多少次後進行內存壓縮 | 因爲併發收集器不對內存空間進行壓縮,整理,因此運行一段時間之後會產生"碎片",使得運行效率下降.此值設置運行多少次GC之後對內存空間進行壓縮,整理. | |
-XX:+CMSParallelRemarkEnabled | 下降標記停頓 | ||
-XX+UseCMSCompactAtFullCollection | 在FULL GC的時候, 對年老代的壓縮 | CMS是不會移動內存的, 所以, 這個很是容易產生碎片, 致使內存不夠用, 所以, 內存的壓縮這個時候就會被啓用。 增長這個參數是個好習慣。 可能會影響性能,可是能夠消除碎片 |
|
-XX:+UseCMSInitiatingOccupancyOnly | 使用手動定義初始化定義開始CMS收集 | 禁止hostspot自行觸發CMS GC | |
-XX:CMSInitiatingOccupancyFraction=70 | 使用cms做爲垃圾回收 使用70%後開始CMS收集 |
92 | 爲了保證不出現promotion failed(見下面介紹)錯誤,該值的設置須要知足如下公式CMSInitiatingOccupancyFraction計算公式 |
-XX:CMSInitiatingPermOccupancyFraction | 設置Perm Gen使用到達多少比率時觸發 | 92 | |
-XX:+CMSIncrementalMode | 設置爲增量模式 | 用於單CPU狀況 | |
-XX:+CMSClassUnloadingEnabled |
輔助信息
-XX:+PrintGC | 輸出形式: [GC 118250K->113543K(130112K), 0.0094143 secs] |
||
-XX:+PrintGCDetails | 輸出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] |
||
-XX:+PrintGCTimeStamps | |||
-XX:+PrintGC:PrintGCTimeStamps | 可與-XX:+PrintGC -XX:+PrintGCDetails混合使用 輸出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs] |
||
-XX:+PrintGCApplicationStoppedTime | 打印垃圾回收期間程序暫停的時間.可與上面混合使用 | 輸出形式:Total time for which application threads were stopped: 0.0468229 seconds | |
-XX:+PrintGCApplicationConcurrentTime | 打印每次垃圾回收前,程序未中斷的執行時間.可與上面混合使用 | 輸出形式:Application time: 0.5291524 seconds | |
-XX:+PrintHeapAtGC | 打印GC先後的詳細堆棧信息 | ||
-Xloggc:filename | 把相關日誌信息記錄到文件以便分析. 與上面幾個配合使用 |
||
-XX:+PrintClassHistogram |
garbage collects before printing the histogram. | ||
-XX:+PrintTLAB | 查看TLAB空間的使用狀況 | ||
XX:+PrintTenuringDistribution | 查看每次minor GC後新的存活週期的閾值 | Desired survivor size 1048576 bytes, new threshold 7 (max 15) |
GC性能方面的考慮
對於GC的性能主要有2個方面的指標:吞吐量throughput(工做時間不算gc的時間佔總的時間比)和暫停pause(gc發生時app對外顯示的沒法響應)。
1. Total Heap
默認狀況下,vm會增長/減小heap大小以維持free space在整個vm中佔的比例,這個比例由MinHeapFreeRatio和MaxHeapFreeRatio指定。
通常而言,server端的app會有如下規則:
2. The Young Generation
另一個對於app流暢性運行影響的因素是young generation的大小。young generation越大,minor collection越少;可是在固定heap size狀況下,更大的young generation就意味着小的tenured generation,就意味着更多的major collection(major collection會引起minor collection)。
NewRatio反映的是young和tenured generation的大小比例。NewSize和MaxNewSize反映的是young generation大小的下限和上限,將這兩個值設爲同樣就固定了young generation的大小(同Xms和Xmx設爲同樣)。
若是但願,SurvivorRatio也能夠優化survivor的大小,不過這對於性能的影響不是很大。SurvivorRatio是eden和survior大小比例。
通常而言,server端的app會有如下規則:
經驗&&規則
promotion failed:
垃圾回收時promotion failed是個很頭痛的問題,通常多是兩種緣由產生,第一個緣由是救助空間不夠,救助空間裏的對象還不該該被移動到年老代,但年輕代又有不少對象須要放入救助空間;第二個緣由是年老代沒有足夠的空間接納來自年輕代的對象;這兩種狀況都會轉向Full GC,網站停頓時間較長。
解決方方案一:
第一個緣由個人最終解決辦法是去掉救助空間,設置-XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0便可,第二個緣由個人解決辦法是設置CMSInitiatingOccupancyFraction爲某個值(假設70),這樣年老代空間到70%時就開始執行CMS,年老代有足夠的空間接納來自年輕代的對象。
解決方案一的改進方案:
又有改進了,上面方法不太好,由於沒有用到救助空間,因此年老代容易滿,CMS執行會比較頻繁。我改善了一下,仍是用救助空間,可是把救助空間加大,這樣也不會有promotion failed。具體操做上,32位Linux和64位Linux好像不同,64位系統彷佛只要配置MaxTenuringThreshold參數,CMS仍是有暫停。爲了解決暫停問題和promotion failed問題,最後我設置-XX:SurvivorRatio=1 ,並把MaxTenuringThreshold去掉,這樣即沒有暫停又不會有promotoin failed,並且更重要的是,年老代和永久代上升很是慢(由於好多對象到不了年老代就被回收了),因此CMS執行頻率很是低,好幾個小時才執行一次,這樣,服務器都不用重啓了。
-Xmx4000M -Xms4000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log
CMSInitiatingOccupancyFraction值與Xmn的關係公式
上面介紹了promontion faild產生的緣由是EDEN空間不足的狀況下將EDEN與From survivor中的存活對象存入To survivor區時,To survivor區的空間不足,再次晉升到old gen區,而old gen區內存也不夠的狀況下產生了promontion faild從而致使full gc.那能夠推斷出:eden+from survivor < old gen區剩餘內存時,不會出現promontion faild的狀況,即:
(Xmx-Xmn)*(1-CMSInitiatingOccupancyFraction/100)>=(Xmn-Xmn/(SurvivorRatior+2)) 進而推斷出:
CMSInitiatingOccupancyFraction <=((Xmx-Xmn)-(Xmn-Xmn/(SurvivorRatior+2)))/(Xmx-Xmn)*100
例如:
當xmx=128 xmn=36 SurvivorRatior=1時 CMSInitiatingOccupancyFraction<=((128.0-36)-(36-36/(1+2)))/(128-36)*100 =73.913
當xmx=128 xmn=24 SurvivorRatior=1時 CMSInitiatingOccupancyFraction<=((128.0-24)-(24-24/(1+2)))/(128-24)*100=84.615…
當xmx=3000 xmn=600 SurvivorRatior=1時 CMSInitiatingOccupancyFraction<=((3000.0-600)-(600-600/(1+2)))/(3000-600)*100=83.33
CMSInitiatingOccupancyFraction低於70% 須要調整xmn或SurvivorRatior值。
令:
Java application項目(非web項目)
改進前:
-Xms128m -Xmx128m -XX:NewSize=64m -XX:PermSize=64m -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=78 -XX:ThreadStackSize=128 -Xloggc:logs/gc.log -Dsun.rmi.dgc.server.gcInterval=3600000 -Dsun.rmi.dgc.client.gcInterval=3600000 -Dsun.rmi.server.exceptionTrace=true
-Xms128m -Xmx128m -Xmn24m -XX:PermSize=80m -XX:MaxPermSize=80m -Xss256k -XX:SurvivorRatio=1 -XX:MaxTenuringThreshold=20 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=75 -XX:+UseCMSCompactAtFullCollection -XX:+CMSParallelRemarkEnabled -XX:CMSFullGCsBeforeCompaction=2 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:logs/gc.log -Dsun.rmi.dgc.server.gcInterval=3600000 -Dsun.rmi.dgc.client.gcInterval=3600000 -Dsun.rmi.server.exceptionTrace=true
-Xms128m -Xmx128m -Xmn36m -XX:PermSize=80m -XX:MaxPermSize=80m -Xss256k -XX:SurvivorRatio=1 -XX:MaxTenuringThreshold=20 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=73 -XX:+UseCMSCompactAtFullCollection -XX:+CMSParallelRemarkEnabled -XX:CMSFullGCsBeforeCompaction=2 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:logs/gc.log -Dsun.rmi.dgc.server.gcInterval=3600000 -Dsun.rmi.dgc.client.gcInterval=3600000 -Dsun.rmi.server.exceptionTrace=true
在上面的基礎上調整Xmn大小到36M,設置CMSInitiatingOccupancyFraction=73。
$JAVA_ARGS .= " -Dresin.home=$SERVER_ROOT -server -Xms6000M -Xmx6000M -Xmn500M -XX:PermSize=500M -XX:MaxPermSize=500M -XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0 -Xnoclassgc -XX:+DisableExplicitGC -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:-CMSParallelRemarkEnabled -XX:CMSInitiatingOccupancyFraction=90 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log ";
說明一下, -XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0就是去掉了救助空間;
-Xnoclassgc禁用類垃圾回收,性能會高一點;
-XX:+DisableExplicitGC禁止System.gc(),省得程序員誤調用gc方法影響性能;
-XX:+UseParNewGC,對年輕代採用多線程並行回收,這樣收得快;
帶CMS參數的都是和併發回收相關的,不明白的能夠上網搜索;
CMSInitiatingOccupancyFraction,這個參數設置有很大技巧,基本上知足(Xmx-Xmn)*(100-CMSInitiatingOccupancyFraction)/100>=Xmn就不會出現promotion failed。在個人應用中Xmx是6000,Xmn是500,那麼Xmx-Xmn是5500兆,也就是年老代有5500兆,CMSInitiatingOccupancyFraction=90說明年老代到90%滿的時候開始執行對年老代的併發垃圾回收(CMS),這時還剩10%的空間是5500*10%=550兆,因此即便Xmn(也就是年輕代共500兆)裏全部對象都搬到年老代裏,550兆的空間也足夠了,因此只要知足上面的公式,就不會出現垃圾回收時的promotion failed;
SoftRefLRUPolicyMSPerMB這個參數我認爲可能有點用,官方解釋是softly reachable objects will remain alive for some amount of time after the last time they were referenced. The default value is one second of lifetime per free megabyte in the heap,我以爲不必等1秒;
-Xmx4000M -Xms4000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log
改進方案:
上面方法不太好,由於沒有用到救助空間,因此年老代容易滿,CMS執行會比較頻繁。我改善了一下,仍是用救助空間,可是把救助空間加大,這樣也不會有promotion failed。
具體操做上,32位Linux和64位Linux好像不同,64位系統彷佛只要配置MaxTenuringThreshold參數,CMS仍是有暫停。爲了解決暫停問題和promotion failed問題,最後我設置-XX:SurvivorRatio=1 ,並把MaxTenuringThreshold去掉,這樣即沒有暫停又不會有promotoin failed,並且更重要的是,年老代和永久代上升很是慢(由於好多對象到不了年老代就被回收了),因此CMS執行頻率很是低,好幾個小時才執行一次,這樣,服務器都不用重啓了。
$JAVA_ARGS .= " -Dresin.home=$SERVER_ROOT -server -Xmx3000M -Xms3000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=70 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log ";64位jdk參考設置,年老代漲得很慢,CMS執行頻率變小,CMS沒有停滯,也不會有promotion failed問題,內存回收得很乾淨
前幾篇篇文章介紹了介紹了JVM的參數設置並給出了一些生產環境的JVM參數配置參考方案。正如以前文章中提到的JVM參數的設置須要根據應用的特性來進行設置,每一個參數的設置都須要對JVM進行長時間的監測,並不斷進行調整才能找到最佳設置方案。本文將介紹若是經過工具及Java api來監測JVM的運行狀態,並詳細介紹各工具的使用方法。
須要監測的數據:(內存使用狀況 誰使用了內存 GC的情況)
內存使用狀況--heap&PermGen
@ 表示經過jmap –heap pid 能夠獲取的值
# 表示經過jstat –gcutil pid 能夠獲取的值
參數的查看能夠經過多種方法 本文中只隨機列出一種。
描述 | 最大值 | 當前值 | 報警值 |
堆內存 | @Heap Configuration::MaxHeapSize sum(eden+servivor+old) |
sum(eden+servivor+old) | 自設 |
非堆內存 | sum(perm+native) | 無 | |
Eden | @Eden Space::capacity | @Eden Space::used | 無 |
Survivor0 | @From Space::capacity | @From Space::used | 無 |
Survivor1 | @To Space::capacity | @To Space::used | 無 |
New gen (注意區別於Xmn參數設置) |
@New Generation::capacity Eden + 1 Survivor Space |
@New Generation::used | 無 |
Old gen | @concurrent mark-sweep generation::capacity (CMS是對old區的gc,因此此處即表示old gen) |
@concurrent mark-sweep generation::capacity(CMS)::used | 自設 |
Perm Gen | @Perm Generation::capacity | @Perm Generation::used | 自設 |
內存使用狀況--config
描述 | 配置值 |
MaxTenuringThreshold | jinfo -flag MaxTenuringThreshold pid |
MinHeapFreeRatio | @Heap Configuration::MinHeapFreeRatio |
MaxHeapFreeRatio | @Heap Configuration::MaxHeapFreeRatio |
new gen gc | @using … in the new generation |
old gen gc | new gen gc聲明下方 |
類總數統計 | ?? |
內存使用狀況—C heap
誰使用了內存
GC的情況
描述 | 收集次數 | 收集時間 | 應用暫停時間 |
Full GC | #FGC | #FGCT | 設置-XX:+PrintGCApplicationStoppedTime後在日誌中查看 |
Young GC | #YGC | #YGCT | 同上 |
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCApplicationStoppedTime -Xloggc:logs/gc.log
經常使用工具介紹:jinfo jmap jstack jstat
觀察運行中的jvm物理內存的佔用狀況。
若是連用SHELL jmap -histo pid>a.log能夠將其保存到文本中去,在一段時間後,使用文本對比工具,能夠對比出GC回收了哪些對象。
參數很簡單,直接查看jmap -h
舉例:
jmap -heap pid
jmap -dump:format=b,file=heap.hprof <pid>
觀察jvm中當前全部線程的運行狀況和線程當前狀態
若是java程序崩潰生成core文件,jstack工具能夠用來得到core文件的java stack和native stack的信息,從而能夠輕鬆地知道java程序是如何崩潰和在程序何處發生問題。另外,jstack工具還能夠附屬到正在運行的java程序中,看到當時運行的java程序的java stack和native stack的信息, 若是如今運行的java程序呈現hung的狀態,jstack是很是有用的。目前只有在Solaris和Linux的JDK版本里面纔有。
參數很簡單,直接查看jstack -h
舉例:
jstack pid
JVM監測工具(Java Virtual Machine Statistics Monitoring Tool)。利用了JVM內建的指令對Java應用程序的資源和性能進行實時的命令行的監控,包括各類堆和非堆的大小及其內存使用量、classloader、compiler、垃圾回收情況等。
舉例:
jstat –printcompilation -h10 3024 250 600
每250毫秒打印一次,一共打印600次 每隔10行顯示一次head
Usage: jstat -help|-options jstat -<option> [-t] [-h<lines>] <vmid> [<interval> [<count>]]
參數介紹:
class | 統計class loader行爲信息 |
compiler | 統計編譯行爲信息 |
gc | 統計jdk gc時heap信息 |
gccapacity | 統計堆內存不一樣代的heap容量信息 |
gccause | 統計gc的狀況(同-gcutil)和引發gc的事件 |
gcnew | 統計gc時新生代的信息(相比gcutil更詳細) |
gcnewcapacity | 統計gc時新生代heap容量 |
gcold | 統計gc時,老年區的狀況 |
gcoldcapacity | 統計gc時,老年區heap容量 |
gcpermcapacity | 統計gc時,permanent區heap容量 |
gcutil | 統計gc時,heap狀況 |
printcompilation | 統計編譯行爲信息 |
-class option:Class Loader Statistics
Column | Description |
---|---|
Loaded | Number of classes loaded. |
Bytes | Number of Kbytes loaded. |
Unloaded | Number of classes unloaded. |
Bytes | Number of Kbytes unloaded. |
Time | Time spent performing class load and unload operations. |
-compiler:HotSpot Just-In-Time Compiler Statistics
Column | Description |
---|---|
Compiled | Number of compilation tasks performed. |
Failed | Number of compilation tasks that failed. |
Invalid | Number of compilation tasks that were invalidated. |
Time | Time spent performing compilation tasks. |
FailedType | Compile type of the last failed compilation. |
FailedMethod | Class name and method for the last failed compilation. |
-gc Option:Garbage-collected heap statistics
Column | Description |
---|---|
S0C | Current survivor space 0 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
S0U | Survivor space 0 utilization (KB). |
S1U | Survivor space 1 utilization (KB). |
EC | Current eden space capacity (KB). |
EU | Eden space utilization (KB). |
OC | Current old space capacity (KB). |
OU | Old space utilization (KB). |
PC | Current permanent space capacity (KB). |
PU | Permanent space utilization (KB). |
YGC | Number of young generation GC Events. |
YGCT | Young generation garbage collection time. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gccapacity Option:Memory Pool Generation and Space Capacities
Column | Description |
---|---|
NGCMN | Minimum new generation capacity (KB). |
NGCMX | Maximum new generation capacity (KB). |
NGC | Current new generation capacity (KB). |
S0C | Current survivor space 0 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
EC | Current eden space capacity (KB). |
OGCMN | Minimum old generation capacity (KB). |
OGCMX | Maximum old generation capacity (KB). |
OGC | Current old generation capacity (KB). |
OC | Current old space capacity (KB). |
PGCMN | Minimum permanent generation capacity (KB). |
PGCMX | Maximum Permanent generation capacity (KB). |
PGC | Current Permanent generation capacity (KB). |
PC | Current Permanent space capacity (KB). |
YGC | Number of Young generation GC Events. |
FGC | Number of Full GC Events. |
-gccause Option:Garbage Collection Statistics, Including GC Events
Column | Description |
---|---|
LGCC | Cause of last Garbage Collection. |
GCC | Cause of current Garbage Collection. |
前面的字段與gcutil相同.
-gcnew Option:New Generation Statistics
Column | Description |
---|---|
S0C | Current survivor space 0 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
S0U | Survivor space 0 utilization (KB). |
S1U | Survivor space 1 utilization (KB). |
TT | Tenuring threshold. |
MTT | Maximum tenuring threshold. |
DSS | Desired survivor size (KB). |
EC | Current eden space capacity (KB). |
EU | Eden space utilization (KB). |
YGC | Number of young generation GC events. |
YGCT | Young generation garbage collection time. |
-gcnewcapacity Option:New Generation Space Size Statistics
Column | Description |
---|---|
NGCMN | Minimum new generation capacity (KB). |
NGCMX | Maximum new generation capacity (KB). |
NGC | Current new generation capacity (KB). |
S0CMX | Maximum survivor space 0 capacity (KB). |
S0C | Current survivor space 0 capacity (KB). |
S1CMX | Maximum survivor space 1 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
ECMX | Maximum eden space capacity (KB). |
EC | Current eden space capacity (KB). |
YGC | Number of young generation GC events. |
FGC | Number of Full GC Events. |
-gcold Option:Old and Permanent Generation Statistics
Column | Description |
---|---|
PC | Current permanent space capacity (KB). |
PU | Permanent space utilization (KB). |
OC | Current old space capacity (KB). |
OU | old space utilization (KB). |
YGC | Number of young generation GC events. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gcoldcapacity Option:Old Generation Statistics
Column | Description |
---|---|
OGCMN | Minimum old generation capacity (KB). |
OGCMX | Maximum old generation capacity (KB). |
OGC | Current old generation capacity (KB). |
OC | Current old space capacity (KB). |
YGC | Number of young generation GC events. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gcpermcapacity Option: Permanent Generation Statistics
Column | Description |
---|---|
PGCMN | Minimum permanent generation capacity (KB). |
PGCMX | Maximum permanent generation capacity (KB). |
PGC | Current permanent generation capacity (KB). |
PC | Current permanent space capacity (KB). |
YGC | Number of young generation GC events. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gcutil Option:Summary of Garbage Collection Statistics
Column | Description |
---|---|
S0 | Survivor space 0 utilization as a percentage of the space's current capacity. |
S1 | Survivor space 1 utilization as a percentage of the space's current capacity. |
E | Eden space utilization as a percentage of the space's current capacity. |
O | Old space utilization as a percentage of the space's current capacity. |
P | Permanent space utilization as a percentage of the space's current capacity. |
YGC | Number of young generation GC events. |
YGCT | Young generation garbage collection time. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-printcompilation Option: HotSpot Compiler Method Statistics
Column | Description |
---|---|
Compiled | Number of compilation tasks performed. |
Size | Number of bytes of bytecode for the method. |
Type | Compilation type. |
Method | Class name and method name identifying the compiled method. Class name uses "/" instead of "." as namespace separator. Method name is the method within the given class. The format for these two fields is consistent with the HotSpot -XX:+PrintComplation option. |
Java api方式監測
jre中提供了一些查看運行中的jvm內部信息的api,這些api包含在java.lang.management包中,此包中的接口是在jdk 5中引入的,因此只有在jdk 5及其以上版本中才能經過這種方式訪問這些信息。下面簡單介紹一下這包括哪些信息,以及如何訪問。
能夠經過此api訪問到運行中的jvm的類加載的信息、jit編譯器的信息、內存分配的狀況、線程的相關信息以及運行jvm的操做系統的信息。java.lang.management包中提供了9個接口來訪問這些信息,使用ManagementFactory的靜態get方法能夠得到相應接口的實例,能夠經過這些實例來獲取你須要的相關信息。
更詳細的關於MBean的介紹參見Java SE 6 新特性: JMX 與系統管理
demo1:查看一下當前運行的jvm中加載了多少個類。想詳細瞭解如何使用這些api,能夠參考java.lang.management包中的詳細api文檔。
public class ClassLoaderChecker { public static void main( String[] args ) throws Exception { ClassLoadingMXBean bean = ManagementFactory.getClassLoadingMXBean(); System.out.println( bean.getLoadedClassCount() ); } }demo2:自定義Mbean Type,記錄的數據可經過jconsole等工具或自寫代碼查看,
//工具方法
public static ObjectName register(String name, Object mbean) { try { ObjectName objectName = new ObjectName(name); MBeanServer mbeanServer = ManagementFactory .getPlatformMBeanServer(); try { mbeanServer.registerMBean(mbean, objectName); } catch (InstanceAlreadyExistsException ex) { mbeanServer.unregisterMBean(objectName); mbeanServer.registerMBean(mbean, objectName); } return objectName; } catch (JMException e) { throw new IllegalArgumentException(name, e); } }
堆內存GC
JVM(採用分代回收的策略),用較高的頻率對年輕的對象(young generation)進行YGC,而對老對象(tenuredgeneration)較少(tenuredgeneration 滿了後才進行)進行Full GC。這樣就不須要每次GC都將內存中全部對象都檢查一遍。
非堆內存不GC
GC不會在主程序運行期對PermGen Space進行清理,因此若是你的應用中有不少CLASS(特別是動態生成類,固然permgen space存放的內容不只限於類)的話,就極可能出現PermGen Space錯誤。
內存申請、對象衰老過程
1、內存申請過程
2、對象衰老過程
GC類型 | 觸發條件 | 觸發時發生了什麼 | 注意 | 查看方式 |
YGC | eden空間不足 | 清空Eden+from survivor中全部no ref的對象佔用的內存 從新調整Eden 和from的大小(parallel GC會觸發此項) |
全過程暫停應用 是否爲多線程處理由具體的GC決定 |
jstat –gcutil gc log |
FGC | old空間不足 |
清空heap中no ref的對象 permgen中已經被卸載的classloader中加載的class信息 如配置了CollectGenOFirst,則先觸發YGC(針對serial GC) 如配置了ScavengeBeforeFullGC,則先觸發YGC(針對serial GC) |
全過程暫停應用 是否爲多線程處理由具體的GC決定 是否壓縮須要看配置的具體GC |
jstat –gcutil gc log |
轉自:前幾篇篇文章介紹了介紹了JVM的參數設置並給出了一些生產環境的JVM參數配置參考方案。正如以前文章中提到的JVM參數的設置須要根據應用的特性來進行設置,每一個參數的設置都須要對JVM進行長時間的監測,並不斷進行調整才能找到最佳設置方案。本文將介紹若是經過工具及Java api來監測JVM的運行狀態,並詳細介紹各工具的使用方法。
須要監測的數據:(內存使用狀況 誰使用了內存 GC的情況)
內存使用狀況--heap&PermGen
@ 表示經過jmap –heap pid 能夠獲取的值
# 表示經過jstat –gcutil pid 能夠獲取的值
參數的查看能夠經過多種方法 本文中只隨機列出一種。
描述 | 最大值 | 當前值 | 報警值 |
堆內存 | @Heap Configuration::MaxHeapSize sum(eden+servivor+old) |
sum(eden+servivor+old) | 自設 |
非堆內存 | sum(perm+native) | 無 | |
Eden | @Eden Space::capacity | @Eden Space::used | 無 |
Survivor0 | @From Space::capacity | @From Space::used | 無 |
Survivor1 | @To Space::capacity | @To Space::used | 無 |
New gen (注意區別於Xmn參數設置) |
@New Generation::capacity Eden + 1 Survivor Space |
@New Generation::used | 無 |
Old gen | @concurrent mark-sweep generation::capacity (CMS是對old區的gc,因此此處即表示old gen) |
@concurrent mark-sweep generation::capacity(CMS)::used | 自設 |
Perm Gen | @Perm Generation::capacity | @Perm Generation::used | 自設 |
內存使用狀況--config
描述 | 配置值 |
MaxTenuringThreshold | jinfo -flag MaxTenuringThreshold pid |
MinHeapFreeRatio | @Heap Configuration::MinHeapFreeRatio |
MaxHeapFreeRatio | @Heap Configuration::MaxHeapFreeRatio |
new gen gc | @using … in the new generation |
old gen gc | new gen gc聲明下方 |
類總數統計 | ?? |
內存使用狀況—C heap
誰使用了內存
GC的情況
描述 | 收集次數 | 收集時間 | 應用暫停時間 |
Full GC | #FGC | #FGCT | 設置-XX:+PrintGCApplicationStoppedTime後在日誌中查看 |
Young GC | #YGC | #YGCT | 同上 |
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCApplicationStoppedTime -Xloggc:logs/gc.log
經常使用工具介紹:jinfo jmap jstack jstat
觀察運行中的jvm物理內存的佔用狀況。
若是連用SHELL jmap -histo pid>a.log能夠將其保存到文本中去,在一段時間後,使用文本對比工具,能夠對比出GC回收了哪些對象。
參數很簡單,直接查看jmap -h
舉例:
jmap -heap pid
jmap -dump:format=b,file=heap.hprof <pid>
觀察jvm中當前全部線程的運行狀況和線程當前狀態
若是java程序崩潰生成core文件,jstack工具能夠用來得到core文件的java stack和native stack的信息,從而能夠輕鬆地知道java程序是如何崩潰和在程序何處發生問題。另外,jstack工具還能夠附屬到正在運行的java程序中,看到當時運行的java程序的java stack和native stack的信息, 若是如今運行的java程序呈現hung的狀態,jstack是很是有用的。目前只有在Solaris和Linux的JDK版本里面纔有。
參數很簡單,直接查看jstack -h
舉例:
jstack pid
JVM監測工具(Java Virtual Machine Statistics Monitoring Tool)。利用了JVM內建的指令對Java應用程序的資源和性能進行實時的命令行的監控,包括各類堆和非堆的大小及其內存使用量、classloader、compiler、垃圾回收情況等。
舉例:
jstat –printcompilation -h10 3024 250 600
每250毫秒打印一次,一共打印600次 每隔10行顯示一次head
Usage: jstat -help|-options jstat -<option> [-t] [-h<lines>] <vmid> [<interval> [<count>]]
參數介紹:
class | 統計class loader行爲信息 |
compiler | 統計編譯行爲信息 |
gc | 統計jdk gc時heap信息 |
gccapacity | 統計堆內存不一樣代的heap容量信息 |
gccause | 統計gc的狀況(同-gcutil)和引發gc的事件 |
gcnew | 統計gc時新生代的信息(相比gcutil更詳細) |
gcnewcapacity | 統計gc時新生代heap容量 |
gcold | 統計gc時,老年區的狀況 |
gcoldcapacity | 統計gc時,老年區heap容量 |
gcpermcapacity | 統計gc時,permanent區heap容量 |
gcutil | 統計gc時,heap狀況 |
printcompilation | 統計編譯行爲信息 |
-class option:Class Loader Statistics
Column | Description |
---|---|
Loaded | Number of classes loaded. |
Bytes | Number of Kbytes loaded. |
Unloaded | Number of classes unloaded. |
Bytes | Number of Kbytes unloaded. |
Time | Time spent performing class load and unload operations. |
-compiler:HotSpot Just-In-Time Compiler Statistics
Column | Description |
---|---|
Compiled | Number of compilation tasks performed. |
Failed | Number of compilation tasks that failed. |
Invalid | Number of compilation tasks that were invalidated. |
Time | Time spent performing compilation tasks. |
FailedType | Compile type of the last failed compilation. |
FailedMethod | Class name and method for the last failed compilation. |
-gc Option:Garbage-collected heap statistics
Column | Description |
---|---|
S0C | Current survivor space 0 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
S0U | Survivor space 0 utilization (KB). |
S1U | Survivor space 1 utilization (KB). |
EC | Current eden space capacity (KB). |
EU | Eden space utilization (KB). |
OC | Current old space capacity (KB). |
OU | Old space utilization (KB). |
PC | Current permanent space capacity (KB). |
PU | Permanent space utilization (KB). |
YGC | Number of young generation GC Events. |
YGCT | Young generation garbage collection time. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gccapacity Option:Memory Pool Generation and Space Capacities
Column | Description |
---|---|
NGCMN | Minimum new generation capacity (KB). |
NGCMX | Maximum new generation capacity (KB). |
NGC | Current new generation capacity (KB). |
S0C | Current survivor space 0 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
EC | Current eden space capacity (KB). |
OGCMN | Minimum old generation capacity (KB). |
OGCMX | Maximum old generation capacity (KB). |
OGC | Current old generation capacity (KB). |
OC | Current old space capacity (KB). |
PGCMN | Minimum permanent generation capacity (KB). |
PGCMX | Maximum Permanent generation capacity (KB). |
PGC | Current Permanent generation capacity (KB). |
PC | Current Permanent space capacity (KB). |
YGC | Number of Young generation GC Events. |
FGC | Number of Full GC Events. |
-gccause Option:Garbage Collection Statistics, Including GC Events
Column | Description |
---|---|
LGCC | Cause of last Garbage Collection. |
GCC | Cause of current Garbage Collection. |
前面的字段與gcutil相同.
-gcnew Option:New Generation Statistics
Column | Description |
---|---|
S0C | Current survivor space 0 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
S0U | Survivor space 0 utilization (KB). |
S1U | Survivor space 1 utilization (KB). |
TT | Tenuring threshold. |
MTT | Maximum tenuring threshold. |
DSS | Desired survivor size (KB). |
EC | Current eden space capacity (KB). |
EU | Eden space utilization (KB). |
YGC | Number of young generation GC events. |
YGCT | Young generation garbage collection time. |
-gcnewcapacity Option:New Generation Space Size Statistics
Column | Description |
---|---|
NGCMN | Minimum new generation capacity (KB). |
NGCMX | Maximum new generation capacity (KB). |
NGC | Current new generation capacity (KB). |
S0CMX | Maximum survivor space 0 capacity (KB). |
S0C | Current survivor space 0 capacity (KB). |
S1CMX | Maximum survivor space 1 capacity (KB). |
S1C | Current survivor space 1 capacity (KB). |
ECMX | Maximum eden space capacity (KB). |
EC | Current eden space capacity (KB). |
YGC | Number of young generation GC events. |
FGC | Number of Full GC Events. |
-gcold Option:Old and Permanent Generation Statistics
Column | Description |
---|---|
PC | Current permanent space capacity (KB). |
PU | Permanent space utilization (KB). |
OC | Current old space capacity (KB). |
OU | old space utilization (KB). |
YGC | Number of young generation GC events. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gcoldcapacity Option:Old Generation Statistics
Column | Description |
---|---|
OGCMN | Minimum old generation capacity (KB). |
OGCMX | Maximum old generation capacity (KB). |
OGC | Current old generation capacity (KB). |
OC | Current old space capacity (KB). |
YGC | Number of young generation GC events. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gcpermcapacity Option: Permanent Generation Statistics
Column | Description |
---|---|
PGCMN | Minimum permanent generation capacity (KB). |
PGCMX | Maximum permanent generation capacity (KB). |
PGC | Current permanent generation capacity (KB). |
PC | Current permanent space capacity (KB). |
YGC | Number of young generation GC events. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-gcutil Option:Summary of Garbage Collection Statistics
Column | Description |
---|---|
S0 | Survivor space 0 utilization as a percentage of the space's current capacity. |
S1 | Survivor space 1 utilization as a percentage of the space's current capacity. |
E | Eden space utilization as a percentage of the space's current capacity. |
O | Old space utilization as a percentage of the space's current capacity. |
P | Permanent space utilization as a percentage of the space's current capacity. |
YGC | Number of young generation GC events. |
YGCT | Young generation garbage collection time. |
FGC | Number of full GC events. |
FGCT | Full garbage collection time. |
GCT | Total garbage collection time. |
-printcompilation Option: HotSpot Compiler Method Statistics
Column | Description |
---|---|
Compiled | Number of compilation tasks performed. |
Size | Number of bytes of bytecode for the method. |
Type | Compilation type. |
Method | Class name and method name identifying the compiled method. Class name uses "/" instead of "." as namespace separator. Method name is the method within the given class. The format for these two fields is consistent with the HotSpot -XX:+PrintComplation option. |
Java api方式監測
jre中提供了一些查看運行中的jvm內部信息的api,這些api包含在java.lang.management包中,此包中的接口是在jdk 5中引入的,因此只有在jdk 5及其以上版本中才能經過這種方式訪問這些信息。下面簡單介紹一下這包括哪些信息,以及如何訪問。
能夠經過此api訪問到運行中的jvm的類加載的信息、jit編譯器的信息、內存分配的狀況、線程的相關信息以及運行jvm的操做系統的信息。java.lang.management包中提供了9個接口來訪問這些信息,使用ManagementFactory的靜態get方法能夠得到相應接口的實例,能夠經過這些實例來獲取你須要的相關信息。
更詳細的關於MBean的介紹參見Java SE 6 新特性: JMX 與系統管理
demo1:查看一下當前運行的jvm中加載了多少個類。想詳細瞭解如何使用這些api,能夠參考java.lang.management包中的詳細api文檔。
public class ClassLoaderChecker { public static void main( String[] args ) throws Exception { ClassLoadingMXBean bean = ManagementFactory.getClassLoadingMXBean(); System.out.println( bean.getLoadedClassCount() ); } }demo2:自定義Mbean Type,記錄的數據可經過jconsole等工具或自寫代碼查看,
//工具方法
public static ObjectName register(String name, Object mbean) { try { ObjectName objectName = new ObjectName(name); MBeanServer mbeanServer = ManagementFactory .getPlatformMBeanServer(); try { mbeanServer.registerMBean(mbean, objectName); } catch (InstanceAlreadyExistsException ex) { mbeanServer.unregisterMBean(objectName); mbeanServer.registerMBean(mbean, objectName); } return objectName; } catch (JMException e) { throw new IllegalArgumentException(name, e); } }