scala wordcount

一.不使用sparksql

 1 package cn.scala_base.collection  2 import scala.io.Source.fromFile;  3 import scala.io.Source  4 import scala.collection.mutable.Map  5 
 6 /**  7  * 藉助scala實現wordcount  8  */
 9 object WordCount { 10   val wordMap = Map[String, Int](); 11 
12  def putMap(tuple: Tuple2[Array[String], Int]) { 13     val arr = tuple._1; 14     for (x <- arr) { 15       if (wordMap.contains(x)) { 16         var count = wordMap(x).toInt + 1; 17         wordMap(x) = count; 18       } else { 19         wordMap += (x -> 1); 20  } 21  } 22 
23  } 24 
25  def putMap2(tuple: Tuple2[String, Int]) { 26     val str = tuple._1; 27     if (wordMap.contains(str)) { 28       var count = wordMap(str).toInt + 1; 29       wordMap(str) = count; 30     } else { 31       wordMap += (str -> 1); 32  } 33 
34  } 35 
36   def main(args: Array[String]): Unit = { 37 
38     //讀取文本
39     val text1 = Source.fromFile("D:/inputword/hello.txt", "gbk").getLines(); 40     val text2 = Source.fromFile("D:/inputword/one.txt", "gbk").getLines(); 41     val text3 = Source.fromFile("D:/inputword/two.txt", "gbk").getLines(); 42 
43     /** 44  * 單詞總數;35 45  * atguigu 12 46  * hadoop 7 47  * hello 5 48  * spark 6 49  * world 5 50  * 51      */
52 
53     /* //統計每一個文件的總單詞數 54  val res1 = List(text1,text2,text3).map(_.map(_.mkString).flatMap(_.split(" ")).map((_,1)).map(_._2).reduceLeft(_+_)); 55  println(res1);//List(18, 10, 7)*/
56 
57     //精確統計三個文件中每一個單詞出現的總次數 58 
59     //若是數據源是iternator,最後一步應該使用foreach對元素進行操做
60     val res = List(text1, text2, text3).map(_.map(_.split(" ")).map((_, 1)).foreach(putMap(_))); 61 
62     //或者 flatMap把切割後的數組中的元素取出,變成單個的字符串 63     // val res = List(text1,text2,text3).map(_.flatMap(_.split(" ")).map((_,1)).foreach(putMap2(_)) ) 64 
65     //遍歷
66     for (key <- wordMap.keySet) { 67       println(key + ":" + wordMap(key)); 68  } 69 
70  } 71 
72 }

 

 

二.在spark集羣上運行wordcountapache

新建一個maven工程數組

pom.xmlmaven

 1 <dependencies>
 2           <dependency>
 3             <groupId>junit</groupId>
 4             <artifactId>junit</artifactId>
 5             <version>4.9</version>
 6         </dependency>
 7   
 8         <dependency>
 9             <groupId>org.apache.spark</groupId>
10             <artifactId>spark-core_2.11</artifactId>
11             <version>2.0.2</version>
12         </dependency>
13           
14         <dependency>
15             <groupId>org.apache.spark</groupId>
16             <artifactId>spark-sql_2.11</artifactId>
17             <version>2.0.2</version>
18         </dependency>
19           
20         <dependency>
21             <groupId>org.apache.spark</groupId>
22             <artifactId>spark-hive_2.11</artifactId>
23             <version>2.0.2</version>
24             <scope>provided</scope>
25         </dependency>
26         
27         <dependency>
28             <groupId>io.hops</groupId>
29             <artifactId>hadoop-client</artifactId>
30             <version>2.7.3</version>
31             <scope>provided</scope>
32         </dependency>
33   </dependencies>
34   
35   <build>
36     <plugins>
37             <plugin>
38                 <groupId>org.scala-tools</groupId>
39                 <artifactId>maven-scala-plugin</artifactId>
40                 <version>2.15.2</version>
41                 <executions>
42                     <execution>
43                         <goals>
44                             <goal>compile</goal>
45                             <goal>testCompile</goal>
46                         </goals>
47                     </execution>
48                 </executions>
49             </plugin>
50       </plugins>
51    </build>
 1 object WordCountCluster {  2   def main(args: Array[String]): Unit = {  3     
 4     val conf = new SparkConf().setAppName("WordCountCluster");  5     
 6     val sc = new SparkContext(conf);  7     
 8     val lines = sc.textFile("hdfs://hadoop002:9000/word.txt",1);  9     
10     //切割
11     val fields = lines.flatMap(_.split(" ")); 12     
13     //映射成元組
14     val wordTuple = fields.map((_,1)); 15     
16     //統計 
17     val result = wordTuple.reduceByKey(_+_); 18     result.foreach(r => println(r._1+":"+r._2)); 19     
20  } 21 }

導出jar並上傳,同時上傳word.txt到hdfs上ide

編寫scalawordcount.shoop

1 /opt/module/spark-2.0.2-bin-hadoop2.7/bin/spark-submit \ 2 --class spark_base.wordcount.WordCountCluster \ 3 --num-executors 3 \ 4 --driver-memory 800m \ 5 --executor-memory 1000m \ 6 --executor-cores 3 \ 7 /opt/module/spark-test/scala/scala-wc.jar \

chmod 777 scalawordcount.shui

./scalawordcount.shspa

相關文章
相關標籤/搜索