【LEETCODE】6三、數組分類,hard級別,題目:8五、四、84

package y2019.Algorithm.array.hard;

/**
 * @ProjectName: cutter-point
 * @Package: y2019.Algorithm.array.hard
 * @ClassName: MaximalRectangle
 * @Author: xiaof
 * @Description: TODO 85. Maximal Rectangle
 * Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
 *
 * Input:
 * [
 *   ["1","0","1","0","0"],
 *   ["1","0","1","1","1"],
 *   ["1","1","1","1","1"],
 *   ["1","0","0","1","0"]
 * ]
 * Output: 6
 *
 * 給定一個僅包含 0 和 1 的二維二進制矩陣,找出只包含 1 的最大矩形,並返回其面積。
 *
 * 若是是隻包含的話,那麼就須要計算面積
 *
 * @Date: 2019/7/26 16:54
 * @Version: 1.0
 */
public class MaximalRectangle {

    public int solution(char[][] matrix){
        //這裏就是一行不一行的遍歷,而後經過每一行的數據的
        if(matrix == null || matrix.length <= 0) {
            return 0;
        }

        int rowLen = matrix.length;
        int colLen = matrix[0].length; //

        int left[] = new int[colLen], right[] = new int[colLen], height[] = new int[colLen];

        //初始化
        for(int j = 0; j < colLen; ++j) {
            right[j] = colLen;
        }

        //初始化right,用來標識這個直方圖的右邊座標位置
        int maxA = 0; //最大面積
        for(int i = 0; i < rowLen; ++i) {
            int curLeft = 0, curRight = colLen;
            //循環遍歷沒一行
            for(int j = 0; j < colLen; ++j) {
                if(matrix[i][j] == '1') {
                    //若是是1,那麼就是++高度
                    height[j]++;
                } else {
                    height[j] = 0;//不然這個直方圖的高度目前爲0
                }
            }

            //計算左邊座標,從0開始,由於每當出現1的時候,咱們就累加進去,若是沒有出現1,是0,那麼咱們要把座標起始位置向右邊移動一位
            //若是是1,那麼以最大值爲準,由於上一層的爲1 的低位在這一層爲0,那麼就斷掉了,再也不這個直方圖中
            for(int j = 0; j < colLen; ++j) {
                if(matrix[i][j] == '1') {
                    left[j] = Math.max(curLeft, left[j]);
                } else {
                    //若是這個位置不是1,那麼就要移動起始座標
                    left[j] = 0;
                    curLeft = j + 1;
                }
            }

            //計算直方圖右邊座標,這個應該從1開始,計算右邊一直在矩陣內的座標
            for(int j = colLen - 1; j >= 0; --j) {
                if(matrix[i][j] == '1') {
                    //這邊取最小值,由於上一層有,這一層沒有,那麼就往左邊縮
                    right[j] = Math.min(curRight, right[j]);
                } else {
                    //若是這個位置不是1,那麼就要移動起始座標
                    right[j] = colLen;
                    curRight = j;
                }
            }

            //計算最大面積
            for(int j = 0; j < colLen; ++j) {
                maxA = Math.max(maxA, (right[j] - left[j]) * height[j]);
            }

        }

        return maxA;

    }

    public static void main(String args[]) {
        char data[][] = {{'1'}};
        char data2[][] = {
                {'1','0','1','0','0'},
                {'1','0','1','1','1'},
                {'1','1','1','1','1'},
                {'1','0','0','1','0'}
        };
        MaximalRectangle fuc = new MaximalRectangle();
        System.out.println(fuc.solution(data2));
    }

}

 

package y2019.Algorithm.array.hard;

/**
 * @ClassName FindMedianSortedArrays
 * @Description TODO 4. Median of Two Sorted Arrays
 *
 * There are two sorted arrays nums1 and nums2 of size m and n respectively.
 * Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
 * You may assume nums1 and nums2 cannot be both empty.
 *
 * nums1 = [1, 3]
 * nums2 = [2]
 *
 * The median is 2.0
 *
 * 參考:https://www.youtube.com/watch?v=LPFhl65R7ww
 * @Author xiaof
 * @Date 2019/7/28 16:32
 * @Version 1.0
 **/
public class FindMedianSortedArrays {

    public double solution(int[] nums1, int[] nums2) {
        if(nums1.length > nums2.length) {
            return solution(nums2, nums1); //咱們須要根據長度小的中間位置計算另一個長的位置的分割點
        }

        //獲取總長
        int x = nums1.length;
        int y = nums2.length;

        //計算區間
        int low = 0, hight = x; //根據第一個數組進行分割
        while (low <= hight) {
            //只要瞞住條件,就一直循環,核心思想仍是二分查找
            //開始分割
            int partitionx = (low +hight) / 2;
            int partitiony = (x + y + 1) / 2 - partitionx; //計算第二個數組的分割點,對於和是奇數的狀況+1,能夠向右邊移動一位保證中間數據在左邊,這樣就不用判斷左右了

            //計算兩個數組中被分割的臨近中間位置的數據,若是分割位置是0,那也就左邊沒有元素不用比較計算,直接設置最小值
            int maxLeftx = partitionx == 0 ? Integer.MIN_VALUE : nums1[partitionx - 1];
            int minRightx = partitionx == x ? Integer.MAX_VALUE : nums1[partitionx]; //右邊最小位置

            int maxLefty = partitiony == 0 ? Integer.MIN_VALUE : nums2[partitiony - 1];
            int minRighty = partitiony == y ? Integer.MAX_VALUE : nums2[partitiony];

            //分三種狀況,第一張找到了
            if(maxLeftx <= minRighty && maxLefty <= minRightx) {
                //由於自己已經排好順序,那麼只要瞞住這個條件,那麼就能夠說這2個集合正好被分紅了2塊
                //判斷一共是奇數個仍是偶數個
                if((x + y) % 2 == 0) {
                    //偶數求平均值
                    return ((double) Math.max(maxLeftx, maxLefty) + Math.min(minRightx, minRighty)) / 2;
                } else {
                    return (double) Math.max(maxLeftx, maxLefty);
                }
            } else if (maxLeftx > minRighty) {
                //若是左邊的第一個序列的最大值比第二個序列右邊最小值大,說明不是中分的數據,說明第一個序列分割的位置太大了,咱們把這個元素劃歸到右邊去
                hight = partitionx - 1;
            } else {
                //maxLefty 》 minRightx 右邊第一個序列的最小值比下面的序列的最大值小,說明高位給低了
                low = partitionx + 1;
            }
        }

        //最後出現異常狀況,那就是若是序列沒排序,那就GG
        return -1;

    }

    public static void main(String args[]) {
        int input1[] = {1,3};
        int input2[] = {2};
        FindMedianSortedArrays fuc = new FindMedianSortedArrays();
        System.out.println(fuc.solution(input1, input2));
    }

}

 

package y2019.Algorithm.array.hard;

/**
 * @ClassName LargestRectangleArea
 * @Description TODO 84. Largest Rectangle in Histogram
 * Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
 * @Author xiaof
 * @Date 2019/7/28 21:44
 * @Version 1.0
 **/
public class LargestRectangleArea {

    public int solution(int[] heights) {
        if(heights == null || heights.length <= 0) {
            return 0;
        }

        //求最大面積,參考85. Maximal Rectangle ,能夠用一樣的思路求解
        //一樣咱們須要找到這個直方圖的左邊界,右邊界,而後整合全部直方圖的最大值
        int left[] = new int[heights.length], right[] = new int[heights.length];

        //遍歷全部直方圖,並根據當前直方圖獲取左右兩邊的位置 left
        left[0] = -1;
        for(int i = 1; i < heights.length; ++i) {
            int p = i - 1;
            while (p >= 0 && heights[p] >= heights[i]) {
//                --p;
                //這裏不用每次都遍歷,直接使用上次的結果就能夠了
                p = left[p];
            }
            //設置這個最左邊的座標
            left[i] = p;
        }

        //設置右邊
        right[heights.length - 1] = heights.length;
        for(int i = heights.length - 2; i >= 0; --i) {
            int p = i + 1;
            while (p < heights.length && heights[p] >= heights[i]) {
//                ++p;
                //這裏不用每次都遍歷,直接使用上次的結果就能夠了
                p = right[p];
            }
            right[i] = p;
        }

        //求面積maxa = Math.max{maxa, heights[i] * (right[i] - left[i] - 1)}
        int maxa = 0;
        for(int i = 0; i < heights.length; ++i) {
            maxa = Math.max(maxa, heights[i] * (right[i] - left[i] - 1));
        }

        return maxa;

    }

    public static void main(String args[]) {
        int data[] = {2,1,5,6,2,3};
        LargestRectangleArea fuc = new LargestRectangleArea();
        System.out.println(fuc.solution(data));
    }

}
相關文章
相關標籤/搜索