剖析Elasticsearch集羣系列第一篇 Elasticsearch的存儲模型和讀寫操做

剖析Elasticsearch集羣系列涵蓋了當今最流行的分佈式搜索引擎Elasticsearch的底層架構和原型實例。html

本文是這個系列的第一篇,在本文中,咱們將討論的Elasticsearch的底層存儲模型及CRUD(建立、讀取、更新和刪除)操做的工做原理。node

Elasticsearch是當今最流行的分佈式搜索引擎,GitHub、 SalesforceIQ、Netflix等公司將其用於全文檢索和分析應用。在Insight,咱們用到了Elasticsearch的諸多不一樣功能,好比:linux

  • 全文檢索
    • 好比找到與搜索詞項(term)最相關的維基百科文章。
  • 聚合
    • 好比在廣告網絡中,可視化的搜索詞項的競價直方圖。
  • 地理空間API
    • 好比在順風車平臺,匹配最近的司機和乘客。

正是由於Elasticsearch如此流行而且就在咱們身邊,我決定深刻研究一下。本文,我將分享Elasticsearch的存儲模型和CRUD操做的工做原理。算法

 

當我在思考分佈式系統是如何工做時,我腦海裏的圖案是這樣的:數據庫

水面以上的是API,如下的纔是真正的引擎,一切魔幻般的事件都發生在水下。本文所關注的就是水下的部分,咱們將關注:apache

  • Elasticsearch是主從架構仍是無主架構
  • Elasticsearch的存儲模型是什麼樣的
  • Elasticsearch是怎麼執行寫操做的
  • Elasticsearch是怎麼執行讀操做的
  • 如何定義搜索結果的相關性

在咱們深刻這些概念以前,讓咱們熟悉下相關的術語。緩存

1 辨析Elasticsearch的索引與Lucene的索引

Elasticsearch中的索引是組織數據的邏輯空間(就比如數據庫)。1個Elasticsearch的索引有1個或者多個分片(默認是5個)。分片對應實際存儲數據的Lucene的索引,分片自身就是一個搜索引擎。每一個分片有0或者多個副本(默認是1個)。Elasticsearch的索引還包含"type"(就像數據庫中的表),用於邏輯上隔離索引中的數據。在Elasticsearch的索引中,給定一個type,它的全部文檔會擁有相同的屬性(就像表的schema)。網絡

(點擊放大圖像)數據結構

圖a展現了一個包含3個分片的Elasticsearch索引,每一個分片擁有1個副本。這些分片組成了一個Elasticsearch索引,每一個分片自身是一個Lucene索引。圖b展現了Elasticsearch索引、分片、Lucene索引和文檔之間的邏輯關係。架構

對應於關係數據庫術語

Elasticsearch Index == Database 
Types == Tables 
Properties == Schema

如今咱們熟悉了Elasticsearch世界的術語,接下來讓咱們看一下節點有哪些不一樣的角色。

2 節點類型

一個Elasticsearch實例是一個節點,一組節點組成了集羣。Elasticsearch集羣中的節點能夠配置爲3種不一樣的角色:

  • 主節點:控制Elasticsearch集羣,負責集羣中的操做,好比建立/刪除一個索引,跟蹤集羣中的節點,分配分片到節點。主節點處理集羣的狀態並廣播到其餘節點,並接收其餘節點的確認響應。

    每一個節點均可以經過設定配置文件elasticsearch.yml中的node.master屬性爲true(默認)成爲主節點。

    對於大型的生產集羣來講,推薦使用一個專門的主節點來控制集羣,該節點將不處理任何用戶請求。

  • 數據節點:持有數據和倒排索引。默認狀況下,每一個節點均可以經過設定配置文件elasticsearch.yml中的node.data屬性爲true(默認)成爲數據節點。若是咱們要使用一個專門的主節點,應將其node.data屬性設置爲false。

  • 客戶端節點:若是咱們將node.master屬性和node.data屬性都設置爲false,那麼該節點就是一個客戶端節點,扮演一個負載均衡的角色,將到來的請求路由到集羣中的各個節點。

Elasticsearch集羣中做爲客戶端接入的節點叫協調節點。協調節點會將客戶端請求路由到集羣中合適的分片上。對於讀請求來講,協調節點每次會選擇不一樣的分片處理請求,以實現負載均衡。

在咱們開始研究發送給協調節點的CRUD請求是如何在集羣中傳播並被引擎執行以前,讓咱們先來看一下Elasticsearch內部是如何存儲數據,以支持全文檢索結果的低延遲服務的。

存儲模型

Elasticsearch使用了Apache Lucene,後者是Doug Cutting(Apache Hadoop之父)使用Java開發的全文檢索工具庫,其內部使用的是被稱爲倒排索引的數據結構,其設計是爲全文檢索結果的低延遲提供服務。文檔是Elasticsearch的數據單位,對文檔中的詞項進行分詞,並建立去重詞項的有序列表,將詞項與其在文檔中出現的位置列表關聯,便造成了倒排索引。

這和一本書後面的索引很是相似,即書中包含的詞彙與其出現的頁碼列表關聯。當咱們說文檔被索引了,咱們指的是倒排索引。咱們來看下以下2個文檔是如何被倒排索引的:

文檔1(Doc 1): Insight Data Engineering Fellows Program
文檔2(Doc 2): Insight Data Science Fellows Program

若是咱們想找包含詞項"insight"的文檔,咱們能夠掃描這個(單詞有序的)倒排索引,找到"insight"並返回包含改詞的文檔ID,示例中是Doc 1和Doc 2。

爲了提升可檢索性(好比但願大小寫單詞都返回),咱們應當先分析文檔再對其索引。分析包括2個部分:

  • 將句子詞條化爲獨立的單詞
  • 將單詞規範化爲標準形式

默認狀況下,Elasticsearch使用標準分析器,它使用了:

  • 標準分詞器以單詞爲界來切詞
  • 小寫詞條(token)過濾器來轉換單詞

還有不少可用的分析器在此不列舉,請參考相關文檔。

爲了實現查詢時能獲得對應的結果,查詢時應使用與索引時一致的分析器,對文檔進行分析。

注意:標準分析器包含了停用詞過濾器,但默認狀況下沒有啓用。

如今,倒排索引的概念已經清楚,讓咱們開始CRUD操做的研究吧。咱們從寫操做開始。

剖析寫操做

建立((C)reate)

當咱們發送索引一個新文檔的請求到協調節點後,將發生以下一組操做:

  • Elasticsearch集羣中的每一個節點都包含了改節點上分片的元數據信息。協調節點(默認)使用文檔ID參與計算,以便爲路由提供合適的分片。Elasticsearch使用MurMurHash3函數對文檔ID進行哈希,其結果再對分片數量取模,獲得的結果便是索引文檔的分片。

    shard = hash(document_id) % (num_of_primary_shards)
  • 當分片所在的節點接收到來自協調節點的請求後,會將該請求寫入translog(咱們將在本系列接下來的文章中講到),並將文檔加入內存緩衝。若是請求在主分片上成功處理,該請求會並行發送到該分片的副本上。當translog被同步(fsync)到所有的主分片及其副本上後,客戶端纔會收到確認通知。
  • 內存緩衝會被週期性刷新(默認是1秒),內容將被寫到文件系統緩存的一個新段上。雖然這個段並無被同步(fsync),但它是開放的,內容能夠被搜索到。
  • 每30分鐘,或者當translog很大的時候,translog會被清空,文件系統緩存會被同步。這個過程在Elasticsearch中稱爲沖洗(flush)。在沖洗過程當中,內存中的緩衝將被清除,內容被寫入一個新段。段的fsync將建立一個新的提交點,並將內容刷新到磁盤。舊的translog將被刪除並開始一個新的translog。

下圖展現了寫請求及其數據流。

(點擊放大圖像)

更新((U)pdate)和刪除((D)elete)

刪除和更新也都是寫操做。可是Elasticsearch中的文檔是不可變的,所以不能被刪除或者改動以展現其變動。那麼,該如何刪除和更新文檔呢?

磁盤上的每一個段都有一個相應的.del文件。當刪除請求發送後,文檔並無真的被刪除,而是在.del文件中被標記爲刪除。該文檔依然能匹配查詢,可是會在結果中被過濾掉。當段合併(咱們將在本系列接下來的文章中講到)時,在.del文件中被標記爲刪除的文檔將不會被寫入新段。

接下來咱們看更新是如何工做的。在新的文檔被建立時,Elasticsearch會爲該文檔指定一個版本號。當執行更新時,舊版本的文檔在.del文件中被標記爲刪除,新版本的文檔被索引到一個新段。舊版本的文檔依然能匹配查詢,可是會在結果中被過濾掉。

文檔被索引或者更新後,咱們就能夠執行查詢操做了。讓咱們看看在Elasticsearch中是如何處理查詢請求的。

剖析讀操做((R)ead)

讀操做包含2部份內容:

  • 查詢階段
  • 提取階段

咱們來看下每一個階段是如何工做的。

查詢階段

在這個階段,協調節點會將查詢請求路由到索引的所有分片(主分片或者其副本)上。每一個分片獨立執行查詢,併爲查詢結果建立一個優先隊列,以相關性得分排序(咱們將在本系列的後續文章中講到)。所有分片都將匹配文檔的ID及其相關性得分返回給協調節點。協調節點建立一個優先隊列並對結果進行全局排序。會有不少文檔匹配結果,可是,默認狀況下,每一個分片只發送前10個結果給協調節點,協調節點爲所有分片上的這些結果建立優先隊列並返回前10個做爲hit。

提取階段

當協調節點在生成的全局有序的文檔列表中,爲所有結果排好序後,它將向包含原始文檔的分片發起請求。所有分片填充文檔信息並將其返回給協調節點。

下圖展現了讀請求及其數據流。

(點擊放大圖像)

如上所述,查詢結果是按相關性排序的。接下來,讓咱們看看相關性是如何定義的。

搜索相關性

相關性是由搜索結果中Elasticsearch打給每一個文檔的得分決定的。默認使用的排序算法是tf/idf(詞頻/逆文檔頻率)。詞頻衡量了一個詞項在文檔中出現的次數 (頻率越高 == 相關性越高),逆文檔頻率衡量了詞項在所有索引中出現的頻率,是一個索引中文檔總數的百分比(頻率越高 == 相關性越低)。最後的得分是tf-idf得分與其餘因子好比(短語查詢中的)詞項接近度、(模糊查詢中的)詞項類似度等的組合。

接下來有什麼?

這些CRUD操做由Elasticsearch內部的一些數據結構所支持,這對於理解Elasticsearch的工做機制很是重要。在接下來的系列文章中,我將帶你們走進相似的那些概念並告訴你們在使用Elasticsearch中有哪些坑。

  • Elasticsearch中的腦裂問題及防治措施
  • 事務日誌
  • Lucene的段
  • 爲何搜索時使用深層分頁很危險
  • 計算搜索相關性中困難及權衡
  • 併發控制
  • 爲何Elasticsearch是準實時的
  • 如何確保讀和寫的一致性
相關文章
相關標籤/搜索