Hive學習之路 (七)Hive的DDL操做

 

正文數據庫

庫操做


一、建立庫

語法結構

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_nameapache

  [COMMENT database_comment]      //關於數據塊的描述ide

  [LOCATION hdfs_path]          //指定數據庫在HDFS上的存儲位置oop

  [WITH DBPROPERTIES (property_name=property_value, ...)];    //指定數據塊屬性spa

  默認地址:/user/hive/warehouse/db_name.db/table_name/partition_name/…rest

建立庫的方式

(1)建立普通的數據庫

複製代碼
0: jdbc:hive2://hadoop3:10000> create database t1;
No rows affected (0.308 seconds)
0: jdbc:hive2://hadoop3:10000> show databases;
+----------------+
| database_name  |
+----------------+
| default        |
| myhive         |
| t1             |
+----------------+
3 rows selected (0.393 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

(2)建立庫的時候檢查存與否

0: jdbc:hive2://hadoop3:10000> create database if not exists t1;
No rows affected (0.176 seconds)
0: jdbc:hive2://hadoop3:10000> 

(3)建立庫的時候帶註釋

 
 

0: jdbc:hive2://hadoop3:10000> create database if not exists t2 comment 'learning hive';
No rows affected (0.217 seconds)
0: jdbc:hive2://hadoop3:10000> code

 

(4)建立帶屬性的庫

0: jdbc:hive2://hadoop3:10000> create database if not exists t3 with dbproperties('creator'='hadoop','date'='2018-04-05');
No rows affected (0.255 seconds)
0: jdbc:hive2://hadoop3:10000>

二、查看庫

查看庫的方式

(1)查看有哪些數據庫

複製代碼

0: jdbc:hive2://hadoop3:10000> show databases;
+----------------+
| database_name |
+----------------+
| default |
| myhive |
| t1 |
| t2 |
| t3 |
+----------------+
5 rows selected (0.164 seconds)
0: jdbc:hive2://hadoop3:10000>orm

複製代碼

 

(2)顯示數據庫的詳細屬性信息

語法htm

desc database [extended] dbname;

示例

複製代碼
0: jdbc:hive2://hadoop3:10000> desc database extended t3;
+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+
| db_name  | comment  |                 location                 | owner_name  | owner_type  |             parameters             |
+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+
| t3       |          | hdfs://myha01/user/hive/warehouse/t3.db  | hadoop      | USER        | {date=2018-04-05, creator=hadoop}  |
+----------+----------+------------------------------------------+-------------+-------------+------------------------------------+
1 row selected (0.11 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

 

(3)查看正在使用哪一個庫

複製代碼
0: jdbc:hive2://hadoop3:10000> select current_database();
+----------+
|   _c0    |
+----------+
| default  |
+----------+
1 row selected (1.36 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

 

(4)查看建立庫的詳細語句

複製代碼
0: jdbc:hive2://hadoop3:10000> show create database t3;
+----------------------------------------------+
|                createdb_stmt                 |
+----------------------------------------------+
| CREATE DATABASE `t3`                         |
| LOCATION                                     |
|   'hdfs://myha01/user/hive/warehouse/t3.db'  |
| WITH DBPROPERTIES (                          |
|   'creator'='hadoop',                        |
|   'date'='2018-04-05')                       |
+----------------------------------------------+
6 rows selected (0.155 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼


三、刪除庫

說明

刪除庫操做

drop database dbname;
drop database if exists dbname;

默認狀況下,hive 不容許刪除包含表的數據庫,有兩種解決辦法:

一、 手動刪除庫下全部表,而後刪除庫

二、 使用 cascade 關鍵字

drop database if exists dbname cascade;

默認狀況下就是 restrict drop database if exists myhive ==== drop database if exists myhive restrict

示例

(1)刪除不含表的數據庫

複製代碼
0: jdbc:hive2://hadoop3:10000> show tables in t1;
+-----------+
| tab_name  |
+-----------+
+-----------+
No rows selected (0.147 seconds)
0: jdbc:hive2://hadoop3:10000> drop database t1;
No rows affected (0.178 seconds)
0: jdbc:hive2://hadoop3:10000> show databases;
+----------------+
| database_name  |
+----------------+
| default        |
| myhive         |
| t2             |
| t3             |
+----------------+
4 rows selected (0.124 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

(2)刪除含有表的數據庫

0: jdbc:hive2://hadoop3:10000> drop database if exists t3 cascade;
No rows affected (1.56 seconds)
0: jdbc:hive2://hadoop3:10000>


四、切換庫

語法

use database_name

示例

0: jdbc:hive2://hadoop3:10000> use t2;
No rows affected (0.109 seconds)
0: jdbc:hive2://hadoop3:10000> 

表操做


一、建立表

語法

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name

  [(col_name data_type [COMMENT col_comment], ...)]

  [COMMENT table_comment]

  [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

  [CLUSTERED BY (col_name, col_name, ...)

    [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

  [ROW FORMAT row_format]

  [STORED AS file_format]

  [LOCATION hdfs_path]

詳情請參見: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualD DL-CreateTable

複製代碼
CREATE TABLE 建立一個指定名字的表。若是相同名字的表已經存在,則拋出異常;用戶能夠用 IF NOT EXIST 選項來忽略這個異常
•EXTERNAL 關鍵字可讓用戶建立一個外部表,在建表的同時指定一個指向實際數據的路徑(LOCATION)
•LIKE 容許用戶複製現有的表結構,可是不復制數據
•COMMENT能夠爲表與字段增長描述
PARTITIONED BY 指定分區
ROW FORMAT
  DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
    MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
    | SERDE serde_name [WITH SERDEPROPERTIES
    (property_name=property_value, property_name=property_value, ...)]
  用戶在建表的時候能夠自定義 SerDe 或者使用自帶的 SerDe。若是沒有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,將會使用自帶的 SerDe。在建表的時候,
用戶還須要爲表指定列,用戶在指定表的列的同時也會指定自定義的 SerDe,Hive 經過 SerDe 肯定表的具體的列的數據。
STORED AS
  SEQUENCEFILE //序列化文件
  | TEXTFILE //普通的文本文件格式
  | RCFILE  //行列存儲相結合的文件
  | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname //自定義文件格式
  若是文件數據是純文本,可使用 STORED AS TEXTFILE。若是數據須要壓縮,使用 STORED AS SEQUENCE 。
LOCATION指定表在HDFS的存儲路徑
複製代碼

最佳實踐:
  若是一份數據已經存儲在HDFS上,而且要被多個用戶或者客戶端使用,最好建立外部表
  反之,最好建立內部表。

  若是不指定,就按照默認的規則存儲在默認的倉庫路徑中。

示例

使用t2數據庫進行操做

(1)建立默認的內部表

複製代碼
0: jdbc:hive2://hadoop3:10000> create table student(id int, name string, sex string, age int,department string) row format delimited fields terminated by ",";
No rows affected (0.222 seconds)
0: jdbc:hive2://hadoop3:10000> desc student;
+-------------+------------+----------+
|  col_name   | data_type  | comment  |
+-------------+------------+----------+
| id          | int        |          |
| name        | string     |          |
| sex         | string     |          |
| age         | int        |          |
| department  | string     |          |
+-------------+------------+----------+
5 rows selected (0.168 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

(2)外部表

0: jdbc:hive2://hadoop3:10000> create external table student_ext
(id int, name string, sex string, age int,department string) row format delimited fields terminated by "," location "/hive/student";
No rows affected (0.248 seconds) 0: jdbc:hive2://hadoop3:10000>

(3)分區表

複製代碼
0: jdbc:hive2://hadoop3:10000> create external table student_ptn(id int, name string, sex string, age int,department string)
. . . . . . . . . . . . . . .> partitioned by (city string)
. . . . . . . . . . . . . . .> row format delimited fields terminated by ","
. . . . . . . . . . . . . . .> location "/hive/student_ptn";
No rows affected (0.24 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

添加分區

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="beijing");
No rows affected (0.269 seconds)
0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="shenzhen");
No rows affected (0.236 seconds)
0: jdbc:hive2://hadoop3:10000> 

若是某張表是分區表。那麼每一個分區的定義,其實就表現爲了這張表的數據存儲目錄下的一個子目錄
若是是分區表。那麼數據文件必定要存儲在某個分區中,而不能直接存儲在表中。

(4)分桶表

複製代碼
0: jdbc:hive2://hadoop3:10000> create external table student_bck(id int, name string, sex string, age int,department string)
. . . . . . . . . . . . . . .> clustered by (id) sorted by (id asc, name desc) into 4 buckets
. . . . . . . . . . . . . . .> row format delimited fields terminated by ","
. . . . . . . . . . . . . . .> location "/hive/student_bck";
No rows affected (0.216 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

(5)使用CTAS建立表

做用: 就是從一個查詢SQL的結果來建立一個表進行存儲

現象student表中導入數據

複製代碼
0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student;
No rows affected (0.715 seconds)
0: jdbc:hive2://hadoop3:10000> select * from student;
+-------------+---------------+--------------+--------------+---------------------+
| student.id  | student.name  | student.sex  | student.age  | student.department  |
+-------------+---------------+--------------+--------------+---------------------+
| 95002       | 劉晨            | 女            | 19           | IS                  |
| 95017       | 王風娟           | 女            | 18           | IS                  |
| 95018       | 王一            | 女            | 19           | IS                  |
| 95013       | 馮偉            | 男            | 21           | CS                  |
| 95014       | 王小麗           | 女            | 19           | CS                  |
| 95019       | 邢小麗           | 女            | 19           | IS                  |
| 95020       | 趙錢            | 男            | 21           | IS                  |
| 95003       | 王敏            | 女            | 22           | MA                  |
| 95004       | 張立            | 男            | 19           | IS                  |
| 95012       | 孫花            | 女            | 20           | CS                  |
| 95010       | 孔小濤           | 男            | 19           | CS                  |
| 95005       | 劉剛            | 男            | 18           | MA                  |
| 95006       | 孫慶            | 男            | 23           | CS                  |
| 95007       | 易思玲           | 女            | 19           | MA                  |
| 95008       | 李娜            | 女            | 18           | CS                  |
| 95021       | 週二            | 男            | 17           | MA                  |
| 95022       | 鄭明            | 男            | 20           | MA                  |
| 95001       | 李勇            | 男            | 20           | CS                  |
| 95011       | 包小柏           | 男            | 18           | MA                  |
| 95009       | 夢圓圓           | 女            | 18           | MA                  |
| 95015       | 王君            | 男            | 18           | MA                  |
+-------------+---------------+--------------+--------------+---------------------+
21 rows selected (0.342 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

使用CTAS建立表

複製代碼
0: jdbc:hive2://hadoop3:10000> create table student_ctas as select * from student where id < 95012;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution 
engine (i.e. spark, tez) or using Hive 1.X releases. No rows affected (34.514 seconds) 0: jdbc:hive2://hadoop3:10000> select * from student_ctas . . . . . . . . . . . . . . .> ; +------------------+--------------------+-------------------+-------------------+--------------------------+ | student_ctas.id | student_ctas.name | student_ctas.sex | student_ctas.age | student_ctas.department | +------------------+--------------------+-------------------+-------------------+--------------------------+ | 95002 | 劉晨 | 女 | 19 | IS | | 95003 | 王敏 | 女 | 22 | MA | | 95004 | 張立 | 男 | 19 | IS | | 95010 | 孔小濤 | 男 | 19 | CS | | 95005 | 劉剛 | 男 | 18 | MA | | 95006 | 孫慶 | 男 | 23 | CS | | 95007 | 易思玲 | 女 | 19 | MA | | 95008 | 李娜 | 女 | 18 | CS | | 95001 | 李勇 | 男 | 20 | CS | | 95011 | 包小柏 | 男 | 18 | MA | | 95009 | 夢圓圓 | 女 | 18 | MA | +------------------+--------------------+-------------------+-------------------+--------------------------+ 11 rows selected (0.445 seconds) 0: jdbc:hive2://hadoop3:10000>
複製代碼

(6)複製表結構

0: jdbc:hive2://hadoop3:10000> create table student_copy like student;
No rows affected (0.217 seconds)
0: jdbc:hive2://hadoop3:10000> 

注意:

若是在table的前面沒有加external關鍵字,那麼複製出來的新表。不管如何都是內部表
若是在table的前面有加external關鍵字,那麼複製出來的新表。不管如何都是外部表


二、查看錶

(1)查看錶列表

查看當前使用的數據庫中有哪些表

複製代碼
0: jdbc:hive2://hadoop3:10000> show tables;
+---------------+
|   tab_name    |
+---------------+
| student       |
| student_bck   |
| student_copy  |
| student_ctas  |
| student_ext   |
| student_ptn   |
+---------------+
6 rows selected (0.163 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

查看非當前使用的數據庫中有哪些表

複製代碼
0: jdbc:hive2://hadoop3:10000> show tables in myhive;
+-----------+
| tab_name  |
+-----------+
| student   |
+-----------+
1 row selected (0.144 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

查看數據庫中以xxx開頭的表

複製代碼
0: jdbc:hive2://hadoop3:10000> show tables like 'student_c*';
+---------------+
|   tab_name    |
+---------------+
| student_copy  |
| student_ctas  |
+---------------+
2 rows selected (0.13 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

(2)查看錶的詳細信息

查看錶的信息

複製代碼
0: jdbc:hive2://hadoop3:10000> desc student;
+-------------+------------+----------+
|  col_name   | data_type  | comment  |
+-------------+------------+----------+
| id          | int        |          |
| name        | string     |          |
| sex         | string     |          |
| age         | int        |          |
| department  | string     |          |
+-------------+------------+----------+
5 rows selected (0.149 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

查看錶的詳細信息(格式不友好)

0: jdbc:hive2://hadoop3:10000> desc extended student;

查看錶的詳細信息(格式友好)

0: jdbc:hive2://hadoop3:10000> desc formatted student;

查看分區信息

0: jdbc:hive2://hadoop3:10000> show partitions student_ptn;

(3)查看錶的詳細建表語句

0: jdbc:hive2://hadoop3:10000> show create table student_ptn;


三、修改表

(1)修改表名

0: jdbc:hive2://hadoop3:10000> alter table student rename to new_student;

(2)修改字段定義

A. 增長一個字段

0: jdbc:hive2://hadoop3:10000> alter table new_student add columns (score int);

B. 修改一個字段的定義

0: jdbc:hive2://hadoop3:10000> alter table new_student change name new_name string;

C. 刪除一個字段

不支持

D. 替換全部字段

0: jdbc:hive2://hadoop3:10000> alter table new_student replace columns (id int, name string, address string);

(3)修改分區信息

A. 添加分區

靜態分區

  添加一個

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing");

  添加多個

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing2") partition(city="chongqing3") partition(city="chongqing4");

動態分區

先向student_ptn表中插入數據,數據格式以下圖

0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student_ptn partition(city="beijing");

如今我把這張表的內容直接插入到另外一張表student_ptn_age中,並實現sex爲動態分區(不指定究竟是哪中性別,讓系統本身分配決定)

首先建立student_ptn_age並指定分區爲age

0: jdbc:hive2://hadoop3:10000> create table student_ptn_age(id int,name string,sex string,department string) partitioned by (age int);

從student_ptn表中查詢數據並插入student_ptn_age表中

複製代碼
0: jdbc:hive2://hadoop3:10000> insert overwrite table student_ptn_age partition(age)
. . . . . . . . . . . . . . .> select id,name,sex,department,age from student_ptn;
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
No rows affected (27.905 seconds)
0: jdbc:hive2://hadoop3:10000> 
複製代碼

B. 修改分區

修改分區,通常來講,都是指修改分區的數據存儲目錄

在添加分區的時候,直接指定當前分區的數據存儲目錄

0: jdbc:hive2://hadoop3:10000> alter table student_ptn add if not exists partition(city='beijing') 
. . . . . . . . . . . . . . .> location '/student_ptn_beijing' partition(city='cc') location '/student_cc';
No rows affected (0.306 seconds)
0: jdbc:hive2://hadoop3:10000> 

修改已經指定好的分區的數據存儲目錄

0: jdbc:hive2://hadoop3:10000> alter table student_ptn partition (city='beijing') set location '/student_ptn_beijing';

此時原先的分區文件夾仍存在,可是在往分區添加數據時,只會添加到新的分區目錄

 

 

C. 刪除分區

0: jdbc:hive2://hadoop3:10000> alter table student_ptn drop partition (city='beijing');


四、刪除表

0: jdbc:hive2://hadoop3:10000> drop table new_student;


五、清空表

0: jdbc:hive2://hadoop3:10000> truncate table student_ptn;

其餘輔助命令

 

相關文章
相關標籤/搜索