JavaShuo
欄目
標籤
Summary - CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly
時間 2020-12-30
標籤
summary
简体版
原文
原文鏈接
[paper] [code] 背景 文中提出了一種用於識別高密度場景的網絡模型 CSRNet,用於精確完成場景計數並生成高質量密度圖像。CSRNet 由兩部分構成:前半部分爲卷積神經網絡CNN,作爲2D特徵提取器,後半部分使用空洞卷積(Dilated Convolution)來增大感受野,並代替池化層。由於全卷積的結構,CSRNet很容易訓練。文章在4個數據集上對CSRNet進行了測試,並取得了當
>>阅读原文<<
相關文章
1.
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes2018—論文筆記
2.
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
3.
人羣密度估計--CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
4.
Understanding Convolutional Neural Networks for NLP
5.
[轉] Understanding Convolutional Neural Networks for NLP
6.
(翻譯)Understanding Convolutional Neural Networks for NLP
7.
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
8.
Understanding and Visualizing Convolutional Neural Networks
9.
有效感受野--Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
10.
有效感覺野--Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
Kotlin學習(一)基本語法
相關標籤/搜索
networks
highly
dilated
csrnet
understanding
convolutional
neural
summary
2019.7.summary
mysql..the
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab4.0備份還原
2.
openstack
3.
深入探討OSPF環路問題
4.
代碼倉庫-分支策略
5.
Admin-Framework(八)系統授權介紹
6.
Sketch教程|如何訪問組件視圖?
7.
問問自己,你真的會用防抖和節流麼????
8.
[圖]微軟Office Access應用終於啓用全新圖標 Publisher已在路上
9.
微軟準備淘汰 SHA-1
10.
微軟準備淘汰 SHA-1
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes2018—論文筆記
2.
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
3.
人羣密度估計--CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
4.
Understanding Convolutional Neural Networks for NLP
5.
[轉] Understanding Convolutional Neural Networks for NLP
6.
(翻譯)Understanding Convolutional Neural Networks for NLP
7.
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
8.
Understanding and Visualizing Convolutional Neural Networks
9.
有效感受野--Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
10.
有效感覺野--Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
>>更多相關文章<<