DBLE分庫分表實戰

環境: DBLE 2.19.03.0
node

OS版本: CentOS Linux release 7.6.1810 (Core) mysql

IP:  192.168.20.10/24算法

MySQL版本: MySQL-社區版-5.7.26sql




添加2個帳號受權:vim

create user 'rw'@'%' identified by 'rw123456';後端

create user 'rd'@'%' identified by 'rd123456';centos

GRANT SELECT, INSERT, UPDATE, DELETE, CREATE,REFERENCES,CREATE TEMPORARY TABLES,INDEX ON *.* TO  rw@'%' ;安全

GRANT SELECT ON *.* TO 'rd'@'%' ;bash



鏈接方式:oracle

讀寫:

mysql -urw -prw123456 --port 8066 -h 192.168.20.10 testdb 

只讀:

mysql -urd -prd123456 --port 8066 -h 192.168.20.10 testdb 

ddl專用:

mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb 

管理帳號:

mysql -uman1 -p654321 --port 9066 -h 192.168.20.10 



解壓DBLE:

tar xf dble-2.19.03.tar.gz  /usr/local/

cd /usr/local

ln -s dble-2.19.03 dble


cd conf/


vim schema.xml   修改後的以下:

<?xml version="1.0"?>
<!DOCTYPE dble:schema SYSTEM "schema.dtd">
<dble:schema xmlns:dble="http://dble.cloud/" version="2.19.03.0">

    <schema name="testdb">
        <!-- 全局表 -->
        <table name="company" primaryKey="id" type="global" dataNode="dn1,dn2,dn3"/>

        <!-- range分區2 -->
        <table name="travelrecord" primaryKey="id" dataNode="dn1,dn2,dn3" rule="sharding-by-range_t"/>

        <!-- hash mod 3 分區 -->
        <table name="hotnews" primaryKey="id" dataNode="dn1,dn2,dn3" rule="id-sharding-by-mod3"/>

        <!-- hashStringmod3 分區 -->
        <table name="user_auth" primaryKey="open_id" dataNode="dn1,dn2,dn3" rule="user-auth-sharding-by-open_id" />

        <!-- ER 分區 -->
        <table name="order1" dataNode="dn1,dn2,dn3" rule="id-sharding-by-mod3"> 
            <childTable name="order_detail" primaryKey="id" joinKey="order_id" parentKey="id" /> 
        </table>
    </schema>
    
    <dataNode name="dn1" dataHost="192.168.20.10" database="db1"/>
    <dataNode name="dn2" dataHost="192.168.20.10" database="db2"/>
    <dataNode name="dn3" dataHost="192.168.20.10" database="db3"/>
    
    <dataHost name="192.168.20.10" maxCon="500" minCon="10" balance="0" switchType="-1" slaveThreshold="100">
        <heartbeat>select user()</heartbeat>
        <writeHost host="hostM" url="192.168.20.10:3306" user="rw" password="rw123456">
            <readHost host="hostS" url="192.168.20.10:3306" user="rd" password="rd123456"/>
        </writeHost>
    </dataHost>
    
</dble:schema>


vim rule.xml 修改後的內容以下:

    <tableRule name="sharding-by-range_t">
        <rule>
            <columns>id</columns>
            <algorithm>rangeLong2</algorithm>
        </rule>
    </tableRule>

    <tableRule name="id-sharding-by-mod3">
        <rule>
            <columns>id</columns>
            <algorithm>hashmod3</algorithm>
        </rule>
    </tableRule>

    <tableRule name="user-auth-sharding-by-open_id">
        <rule>                                                                                                                      
            <columns>open_id</columns>
            <algorithm>hashStringmod3</algorithm>
        </rule>
    </tableRule>

    <function name="rangeLong2" class="NumberRange">
        <property name="mapFile">autopartition-long_t.txt</property>
        <property name="defaultNode">0</property><!-- 不符合條件的插入到第一個分區去 -->
    </function>
    
    <function name="hashmod3" class="Hash">
        <property name="partitionCount">3</property>
        <property name="partitionLength">1</property>
    </function>
    
    <function name="hashStringmod3" class="StringHash">
        <property name="partitionCount">3</property>
        <property name="partitionLength">1</property>
        <property name="hashSlice">0:20</property>  <!-- 表示取前20位進行hash取模後再決定數據落在那個分片上 -->
    </function>


[root@centos7 /usr/local/dble/conf ]#  vim autopartition-long_t.txt  # 增長一個路由規則文件

# range start-end ,data node index
# K=1000,M=10000.
# 範圍:前開後閉 (開區間,閉區間]
0-1M=0
1M-2M=1
2M-3M=2



vim server.xml 內容以下:

修改user部分爲以下: 
    <user name="man1">
        <property name="password">654321</property>
        <property name="manager">true</property>
        <!-- manager user can't set schema-->
    </user>
    <user name="op">
        <property name="password">123456</property>
        <property name="schemas">testdb</property>
    </user>
        <!-- table's DML privileges  INSERT/UPDATE/SELECT/DELETE -->
<!--
        <privileges check="true">
            <schema name="testdb" dml="0110" >
                <table name="employee" dml="1111"></table>
            </schema>
        </privileges>
-->
    <user name="rw">
        <property name="password">rw123456</property>
        <property name="schemas">testdb</property>
    </user>
    <user name="rd">
        <property name="password">rd123456</property>
        <property name="schemas">testdb</property>
        <property name="readOnly">true</property>
    </user>



而後, reload 下 dble , 進行測試


ddl專用:

    mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb 


去建立符合上面的要求的幾個表,並寫入數據測試:

## 測試range分區
(testdb) > create table travelrecord (
id bigint not null primary key,
user_id varchar(100),
traveldate DATE, 
fee decimal(10,2),
days int
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

(testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(10,'wang','2014-01-05',510,3);
(testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(13000,'lee','2011-01-05',26.5,3);
(testdb) > insert into travelrecord (id,user_id,traveldate,fee,days) values(29800,'zhang','2018-01-05',23.3,3);

(testdb) > select * from travelrecord ;
+-------+---------+------------+--------+------+
| id    | user_id | traveldate | fee    | days |
+-------+---------+------------+--------+------+
|    10 | wang    | 2014-01-05 | 510.00 |    3 |
| 13000 | lee     | 2011-01-05 |  26.50 |    3 |
| 29800 | zhang   | 2018-01-05 |  23.30 |    3 |
+-------+---------+------------+--------+------+



## 測試全局表
(testdb) > create table company(id int not null primary key,name varchar(100)); 

(testdb) > insert into company(id,name) values(1,'hp');
(testdb) > insert into company(id,name) values(2,'ibm');
(testdb) > insert into company(id,name) values(3,'oracle');

(testdb) > select * from company ;
+----+--------+
| id | name   |
+----+--------+
|  1 | hp     |
|  2 | ibm    |
|  3 | oracle |
+----+--------+
3 rows in set (0.01 sec)

多執行幾回,你會看到三個分片上都插入了3條數據,由於company定義爲全局表。

(testdb) > explain insert into company(id,name) values(1,'hp');
+-----------+----------+---------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                    |
+-----------+----------+---------------------------------------------+
| dn1       | BASE SQL | insert into company(id,name) values(1,'hp') |
| dn2       | BASE SQL | insert into company(id,name) values(1,'hp') |
| dn3       | BASE SQL | insert into company(id,name) values(1,'hp') |
+-----------+----------+---------------------------------------------+
3 rows in set (0.00 sec)

使用 explain select * from company ;   命令也能夠看到隨機分發到3個節點的。



## 測試hashmod分區
create table hotnews (id bigint unsigned not null primary key ,title varchar(400) ,created_time datetime) ENGINE=InnoDB DEFAULT CHARSET=utf8;

而後, 咱們寫個腳本,批量插入些數據,看看狀況:

for i in {1..1000}; do 
  mysql -uop -p123456 --port 8066 -h 192.168.20.10 testdb  -e "insert into hotnews(id,title,created_time) values($i,'one',now());"
done

而後,到後端的3個分片上看下數據量,大體以下,仍是比較均勻的:
(db1) > select count(*)  from db1.hotnews;
+----------+
| count(*) |
+----------+
|      333 |
+----------+
1 row in set (0.00 sec)

(db1) > select count(*)  from db2.hotnews;
+----------+
| count(*) |
+----------+
|      334 |
+----------+
1 row in set (0.00 sec)

(db1) > select count(*)  from db3.hotnews;
+----------+
| count(*) |
+----------+
|      333 |
+----------+
1 row in set (0.00 sec)



## hashStringmod分區
CREATE TABLE `user_auth` (
  `id` bigint unsigned NOT NULL AUTO_INCREMENT COMMENT '主鍵id',
  `open_id` varchar(100) NOT NULL DEFAULT '' COMMENT '第三方受權id',
  `union_id` varchar(100) NOT NULL DEFAULT '' COMMENT '受權的關聯id',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用戶AUTH信息表' ;

#### 注意:實際生產環境的主鍵id須要由程序去保證惟一性(例如使用雪花算法)

(testdb) > insert into user_auth (id,open_id,union_id) values(1,'331116828422393856','oy0IAj9mdPUr7bLMl879Jp37eV3Y');
(testdb) > insert into user_auth (id,open_id,union_id) values(2,'341170994247204864','oy0IA3Yj9mdPUr7bLMl879Jp37eV');
(testdb) > insert into user_auth (id,open_id,union_id) values(3,'330414325695332352','oy0IAj9mdPU3Yr7bLMl879Jp37eV');
(testdb) > insert into user_auth (id,open_id,union_id) values(4,'328588424011591680','oy0IAj9mdPUr7bLMl8Jp37e79V');
(testdb) > insert into user_auth (id,open_id,union_id) values(5,'330414325695332352','oy0IA3Yj9mdPUr7p37ebLMl879JV3Y');
(testdb) > insert into user_auth (id,open_id,union_id) values(6,'341172222247211111','oy0IAj9bLMl879Jp37eV3YmdPUr7');
(testdb) > insert into user_auth (id,open_id,union_id) values(7,'341173334247755464','Jp37eoy0IAj9mdPUr73YbLMl879V');

(testdb) > select id,open_id,union_id from user_auth order by id asc ;
+----+--------------------+--------------------------------+
| id | open_id            | union_id                       |
+----+--------------------+--------------------------------+
|  1 | 331116828422393856 | oy0IAj9mdPUr7bLMl879Jp37eV3Y   |
|  2 | 341170994247204864 | oy0IA3Yj9mdPUr7bLMl879Jp37eV   |
|  3 | 330414325695332352 | oy0IAj9mdPU3Yr7bLMl879Jp37eV   |
|  4 | 328588424011591680 | oy0IAj9mdPUr7bLMl8Jp37e79V     |
|  5 | 330414325695332352 | oy0IA3Yj9mdPUr7p37ebLMl879JV3Y |
|  6 | 341172222247211111 | oy0IAj9bLMl879Jp37eV3YmdPUr7   |
|  7 | 341173334247755464 | Jp37eoy0IAj9mdPUr73YbLMl879V   |
+----+--------------------+--------------------------------+
7 rows in set (0.00 sec)

(testdb) > explain select id,open_id,union_id from user_auth where open_id = '341173334247755464' ;
+-----------+----------+--------------------------------------------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                                                                        |
+-----------+----------+--------------------------------------------------------------------------------+
| dn2       | BASE SQL | select id,open_id,union_id from user_auth where open_id = '341173334247755464' |
+-----------+----------+--------------------------------------------------------------------------------+
1 row in set (0.00 sec)

(testdb) > explain select id,open_id,union_id from user_auth where open_id = '331116828422393856' ;
+-----------+----------+--------------------------------------------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                                                                        |
+-----------+----------+--------------------------------------------------------------------------------+
| dn1       | BASE SQL | select id,open_id,union_id from user_auth where open_id = '331116828422393856' |
+-----------+----------+--------------------------------------------------------------------------------+
1 row in set (0.00 sec)

(testdb) > explain select id,open_id,union_id from user_auth where open_id = '328588424011591680' ;
+-----------+----------+--------------------------------------------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                                                                        |
+-----------+----------+--------------------------------------------------------------------------------+
| dn3       | BASE SQL | select id,open_id,union_id from user_auth where open_id = '328588424011591680' |
+-----------+----------+--------------------------------------------------------------------------------+
1 row in set (0.00 sec)



############################################################################

上面就是幾種經常使用的分區了, 另外還有種 date類型按時間分區的可能在日誌表的場景下也經常使用些。


date類型分區的實驗:

先去後端的db上建立物理的庫:

create database userdb1 ;
create database userdb2 ;
create database userdb3 ;
create database userdb4 ;
create database userdb5 ;
create database userdb6 ;
create database userdb7 ;
create database userdb8 ;
create database userdb9 ;
create database userdb10 ;
create database userdb11 ;
create database userdb12 ;
create database userdb13 ;


修改後的 schema.xml 相似以下:

<?xml version="1.0"?>
<!DOCTYPE dble:schema SYSTEM "schema.dtd">

<dble:schema xmlns:dble="http://dble.cloud/" version="2.19.03.0">

    <schema name="testdb">
        <!-- 按月分片 -->
        <table name="user" dataNode="user_dn$1-13" rule="sharding-by-month-user"/>
    </schema>
    
    <dataNode name="user_dn1" dataHost="192.168.20.10" database="userdb1"/>
    <dataNode name="user_dn2" dataHost="192.168.20.10" database="userdb2"/>
    <dataNode name="user_dn3" dataHost="192.168.20.10" database="userdb3"/>
    <dataNode name="user_dn4" dataHost="192.168.20.10" database="userdb4"/>
    <dataNode name="user_dn5" dataHost="192.168.20.10" database="userdb5"/>
    <dataNode name="user_dn6" dataHost="192.168.20.10" database="userdb6"/>
    <dataNode name="user_dn7" dataHost="192.168.20.10" database="userdb7"/>
    <dataNode name="user_dn8" dataHost="192.168.20.10" database="userdb8"/>
    <dataNode name="user_dn9" dataHost="192.168.20.10" database="userdb9"/>
    <dataNode name="user_dn10" dataHost="192.168.20.10" database="userdb10"/>
    <dataNode name="user_dn11" dataHost="192.168.20.10" database="userdb11"/>
    <dataNode name="user_dn12" dataHost="192.168.20.10" database="userdb12"/>
    <dataNode name="user_dn13" dataHost="192.168.20.10" database="userdb13"/>
    
    <dataHost name="192.168.20.10" maxCon="500" minCon="10" balance="0" switchType="-1" slaveThreshold="100">
        <heartbeat>select user()</heartbeat>
        <writeHost host="hostM" url="192.168.20.10:3306" user="rw" password="rw123456">
            <readHost host="hostS" url="192.168.20.10:3306" user="rd" password="rd123456"/>
        </writeHost>
    </dataHost>
    
</dble:schema>




而後,到 rule.xml中添加規則:

<tableRule name="sharding-by-month-user">
    <rule>
        <columns>addData</columns>
        <algorithm>partbymonth-user</algorithm>
    </rule>
</tableRule>

<!-- 加的基於月份的分片規則, 注意若是數量超了 會插入報錯 -->
    <function name="partbymonth-user" class="Date">
        <property name="dateFormat">yyyy-MM-dd</property>
            <property name="sBeginDate">2018-01-01</property>
         <!--  <property name="sEndDate">2019-02-31</property> -->
        <property name="sPartionDay">30</property>  <!-- 默認是每10天一個分片。我這裏改爲每30天一個分片,另外注意並不按照固定的月來寫入 -->
        <property name="defaultNode">0</property><!-- 默認小於 2018-01-01 的數據插入到dn1去 -->
    </function>




(testdb) > create table if not exists user (addData date, dbname varchar(32),username varchar(32),province varchar(16),age int(3));

(testdb) > insert into user (addData,dbname,username,age) values ('2015-01-01',database(),'user1',12);

(testdb) > insert into user (addData,dbname,username,age) values ('2016-02-01',database(),'user1',12);

(testdb) > explain  insert into user (addData,dbname,username,age) values ('2017-03-01',database(),'user1',12);
+-----------+----------+--------------------------------------------------------------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                                                                                          |
+-----------+----------+--------------------------------------------------------------------------------------------------+
| user_dn1  | BASE SQL | INSERT INTO user (addData, dbname, username, age) VALUES ('2017-03-01', DATABASE(), 'user1', 12) |
+-----------+----------+--------------------------------------------------------------------------------------------------+
(testdb) > insert into user (addData,dbname,username,age) values ('2017-03-01',database(),'user1',12);


(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-01',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-11',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-21',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-25',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-04-30',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-05-01',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-05-03',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-05-05',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-06-21',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2018-07-30',database(),'user1',12);
(testdb) > insert into user (addData,dbname,username,age) values ('2019-01-01',database(),'user1',12);

(testdb) > insert into user (addData,dbname,username,age) values ('2019-06-01',database(),'user1',12);
ERROR 1064 (HY000): can't find any valid data node :user -> ADDDATA -> 2019-06-01


所以,咱們須要提早人工把分片加好 並作好可用分區的監控,否則會形成沒法寫入數據的事故出現。


(testdb) > select * from user order by addData asc ;
+------------+----------+----------+----------+------+
| addData    | dbname   | username | province | age  |
+------------+----------+----------+----------+------+
| 2015-01-01 | userdb1  | user1    | NULL     |   12 |
| 2016-02-01 | userdb1  | user1    | NULL     |   12 |
| 2017-03-01 | userdb1  | user1    | NULL     |   12 |
| 2018-04-01 | userdb4  | user1    | NULL     |   12 |
| 2018-04-11 | userdb4  | user1    | NULL     |   12 |
| 2018-04-21 | userdb4  | user1    | NULL     |   12 |
| 2018-04-25 | userdb4  | user1    | NULL     |   12 |
| 2018-04-30 | userdb4  | user1    | NULL     |   12 |
| 2018-05-01 | userdb5  | user1    | NULL     |   12 |
| 2018-05-03 | userdb5  | user1    | NULL     |   12 |
| 2018-05-05 | userdb5  | user1    | NULL     |   12 |
| 2018-06-21 | userdb6  | user1    | NULL     |   12 |
| 2018-07-30 | userdb8  | user1    | NULL     |   12 |
| 2019-01-01 | userdb13 | user1    | NULL     |   12 |
+------------+----------+----------+----------+------+
14 rows in set (0.02 sec)


查詢測試:
(testdb) > explain select * from user where addData between '2018-04-01' and '2018-04-30' ;
+-----------+----------+------------------------------------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                                                                |
+-----------+----------+------------------------------------------------------------------------+
| user_dn4  | BASE SQL | select * from user where addData between '2018-04-01' and '2018-04-30' |
+-----------+----------+------------------------------------------------------------------------+
1 row in set (0.00 sec)


(testdb) > select * from user where addData between '2018-04-01' and '2018-04-30' ;
+------------+---------+----------+----------+------+
| addData    | dbname  | username | province | age  |
+------------+---------+----------+----------+------+
| 2018-04-01 | userdb4 | user1    | NULL     |   12 |
| 2018-04-11 | userdb4 | user1    | NULL     |   12 |
| 2018-04-21 | userdb4 | user1    | NULL     |   12 |
| 2018-04-25 | userdb4 | user1    | NULL     |   12 |
| 2018-04-30 | userdb4 | user1    | NULL     |   12 |
+------------+---------+----------+----------+------+
5 rows in set (0.01 sec)


(testdb) > explain select * from user where addData between '2018-04-01' and '2018-05-30' order by addData asc ;
+-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| DATA_NODE       | TYPE          | SQL/REF                                                                                                                                                                                 |
+-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| user_dn4_0      | BASE SQL      | select `user`.`addData`,`user`.`dbname`,`user`.`username`,`user`.`province`,`user`.`age` from  `user` where addData BETWEEN '2018-04-01' AND '2018-05-30' ORDER BY `user`.`addData` ASC |
| user_dn5_0      | BASE SQL      | select `user`.`addData`,`user`.`dbname`,`user`.`username`,`user`.`province`,`user`.`age` from  `user` where addData BETWEEN '2018-04-01' AND '2018-05-30' ORDER BY `user`.`addData` ASC |
| merge_1         | MERGE         | user_dn4_0; user_dn5_0                                                                                                                                                                  |
| shuffle_field_1 | SHUFFLE_FIELD | merge_1                                                                                                                                                                                 |
+-----------------+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
4 rows in set (0.00 sec)


(testdb) > select * from user where addData between '2018-04-01' and '2018-05-30' order by addData asc ;
+------------+---------+----------+----------+------+
| addData    | dbname  | username | province | age  |
+------------+---------+----------+----------+------+
| 2018-04-01 | userdb4 | user1    | NULL     |   12 |
| 2018-04-11 | userdb4 | user1    | NULL     |   12 |
| 2018-04-21 | userdb4 | user1    | NULL     |   12 |
| 2018-04-25 | userdb4 | user1    | NULL     |   12 |
| 2018-04-30 | userdb4 | user1    | NULL     |   12 |
| 2018-05-01 | userdb5 | user1    | NULL     |   12 |
| 2018-05-03 | userdb5 | user1    | NULL     |   12 |
| 2018-05-05 | userdb5 | user1    | NULL     |   12 |
+------------+---------+----------+----------+------+
8 rows in set (0.01 sec)



date類型的可用分區的監控(腳本的原理一樣適用於其餘類型的分區):

簡單的作法就是按期執行一個explain的insert插入測試, 若是有ERROR關鍵字就告警出來

一個簡單的腳本以下:
# 提早60天預警

DAYS=$(date -d 60days  +%F)
echo $DAYS

if mysql -urw -prw123456 --port 8066 -h 192.168.20.10 testdb 2>/dev/null -e "explain insert into user (addData,dbname,username,age) values (\"$DAYS\",database(),'user1',12);" ; then 
    echo "當前可用分片數量處於安全狀態"
else
    echo "須要加新的分片了"
fi




date類型加新的分片的方法: 

一、修改schema.xml 加上新的分片的配置信息,修改後大體這樣:

<?xml version="1.0"?>
<!DOCTYPE dble:schema SYSTEM "schema.dtd">
<dble:schema xmlns:dble="http://dble.cloud/" version="2.19.03.0">

    <schema name="testdb">	
        <!-- 按月分片 -->
        <table name="user" dataNode="user_dn$1-23" rule="sharding-by-month-user"/>
    </schema>

    <dataNode name="user_dn1" dataHost="192.168.20.10" database="userdb1"/>
    <dataNode name="user_dn2" dataHost="192.168.20.10" database="userdb2"/>
    <dataNode name="user_dn3" dataHost="192.168.20.10" database="userdb3"/>
    <dataNode name="user_dn4" dataHost="192.168.20.10" database="userdb4"/>
    <dataNode name="user_dn5" dataHost="192.168.20.10" database="userdb5"/>
    <dataNode name="user_dn6" dataHost="192.168.20.10" database="userdb6"/>
    <dataNode name="user_dn7" dataHost="192.168.20.10" database="userdb7"/>
    <dataNode name="user_dn8" dataHost="192.168.20.10" database="userdb8"/>
    <dataNode name="user_dn9" dataHost="192.168.20.10" database="userdb9"/>
    <dataNode name="user_dn10" dataHost="192.168.20.10" database="userdb10"/>
    <dataNode name="user_dn11" dataHost="192.168.20.10" database="userdb11"/>
    <dataNode name="user_dn12" dataHost="192.168.20.10" database="userdb12"/>
    <dataNode name="user_dn13" dataHost="192.168.20.10" database="userdb13"/>
    <dataNode name="user_dn14" dataHost="192.168.20.10" database="userdb14"/>
    <dataNode name="user_dn15" dataHost="192.168.20.10" database="userdb15"/>
    <dataNode name="user_dn16" dataHost="192.168.20.10" database="userdb16"/>
    <dataNode name="user_dn17" dataHost="192.168.20.10" database="userdb17"/>
    <dataNode name="user_dn18" dataHost="192.168.20.10" database="userdb18"/>
    <dataNode name="user_dn19" dataHost="192.168.20.10" database="userdb19"/>
    <dataNode name="user_dn20" dataHost="192.168.20.10" database="userdb20"/>
    <dataNode name="user_dn21" dataHost="192.168.20.10" database="userdb21"/>
    <dataNode name="user_dn22" dataHost="192.168.20.10" database="userdb22"/>
    <dataNode name="user_dn23" dataHost="192.168.20.10" database="userdb23"/>

    <dataHost name="192.168.20.10" maxCon="500" minCon="10" balance="0" switchType="-1" slaveThreshold="100">
        <heartbeat>select user()</heartbeat>
        <writeHost host="hostM" url="192.168.20.10:3306" user="rw" password="rw123456">
            <readHost host="hostS" url="192.168.20.10:3306" user="rd" password="rd123456"/>
        </writeHost>
    </dataHost>
</dble:schema>


二、重載配置文件
reload @@config_all ;


三、去後端建立對應的物理庫  
create database userdb14;
.....這裏省略其它的建庫語句.......
create database userdb23;

四、經過dble再次下發下建表命令
create table if not exists user (addData date, dbname varchar(32),username varchar(32),province varchar(16),age int(3));


五、插入數據測試
(testdb) > explain insert into user (addData,dbname,username,age) values ('2019-11-01',database(),'user1',12);
+-----------+----------+--------------------------------------------------------------------------------------------------+
| DATA_NODE | TYPE     | SQL/REF                                                                                          |
+-----------+----------+--------------------------------------------------------------------------------------------------+
| user_dn23 | BASE SQL | INSERT INTO user (addData, dbname, username, age) VALUES ('2019-11-01', DATABASE(), 'user1', 12) |
+-----------+----------+--------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

(testdb) > explain insert into user (addData,dbname,username,age) values ('2019-12-01',database(),'user1',12);
ERROR 1064 (HY000): can't find any valid data node :user -> ADDDATA -> 2019-12-01






######################################################################################################



ER 表 (互聯網場景下用多表JOIN的很少,所以ER分片規則不太經常使用到,可是須要大體的瞭解):

下面的內容大篇幅參考: https://blog.csdn.net/zhanglei_16/article/details/50779929

1:ER分片關係簡介

有一類業務,例如訂單(ORDER)跟訂單明細表(ORDER_DETAIL),明細表會依賴訂單單,就是該會存在表的主從關係,

這相似業務的切分能夠抽象出合適的切分規則,好比根據用戶ID切分,其它相關的表都依賴於用戶ID,再或者根據訂單ID進行切分,

總之部分業務總會能夠抽象出父子關係的表。這類表適用於ER分片表,子表的記錄與所關聯的父表記錄存放在同一個數據分片上,

避免數據Join跨庫操做,以order與order_detail例子爲例,schema.xml中定義合適的分片配置,order,order_detail 根據order_id

迕行數據切分,保證相同order_id的數據分到同一個分片上,在進行數據插入操做時,Mycat會獲取order所在的分片,

而後將order_detail也插入到order所在的分片


2:父表按照主鍵ID分片,字表的分片字段與主表ID關聯,配置爲ER分片

2.1:在schema.xml添加以下配置配置文件修改


<!-- ER 分區 -->

<table name="order1" dataNode="dn1,dn2,dn3" rule="id-sharding-by-mod3"> 

 <childTable name="order_detail" primaryKey="id" joinKey="order_id" parentKey="id" /> 

</table>



在rule.xml裏面設定分片規則:

    <tableRule name="id-sharding-by-mod3">

        <rule>                                                                                                                                                 

            <columns>id</columns>

            <algorithm>hashmod3</algorithm>

        </rule>

    </tableRule>

    <!-- mod 3 -->

    <function name="hashmod3" class="Hash">                                                                                                                    

        <property name="partitionCount">3</property>

        <property name="partitionLength">1</property>

    </function>



而後, reload 下 dble 




2.2 先建表, order 和 order_detail 表,有主外鍵關係

mysql> explain CREATE TABLE order1 (id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) ENGINE=InnoDB DEFAULT CHARSET=utf8;

+-----------+-----------------------------------------------------------------------------------------------------+

| DATA_NODE | SQL                                                                                                 |

+-----------+-----------------------------------------------------------------------------------------------------+

| dn1       | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |

| dn2       | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |

| dn3       | CREATE TABLE order1(id int unsigned NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) |

+-----------+-----------------------------------------------------------------------------------------------------+

3 rows in set (0.02 sec)


mysql> CREATE TABLE order1(id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,sn VARCHAR(64),create_time DATETIME) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.35 sec)



mysql> CREATE TABLE order_detail(id INT AUTO_INCREMENT PRIMARY KEY, order_id INT,ord_status CHAR(1),address VARCHAR(128),create_time DATETIME,CONSTRAINT FK_ORDid FOREIGN KEY (order_id) REFERENCES order1 (id)) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Query OK, 0 rows affected (0.44 sec)


3.3 錄入數據:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW());

+-----------+----------------------------------------------------------------+

| DATA_NODE | SQL                                                            |

+-----------+----------------------------------------------------------------+

| dn2       | INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW()) |

+-----------+----------------------------------------------------------------+

1 row in set (0.03 sec)


錄入數據,一組組錄入,涉及到外鍵關係: 

第一組北京的訂單

mysql> INSERT INTO order1(id,sn,create_time) VALUES(1,'BJ0001',NOW());

Query OK, 1 row affected (0.05 sec)


mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (1,1,'1','test data  of order1(id=1,BJ001) ',NOW());


第二組上海的訂單:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW());

+-----------+----------------------------------------------------------------+

| DATA_NODE | SQL                                                            |

+-----------+----------------------------------------------------------------+

| dn1       | INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW()) |

+-----------+----------------------------------------------------------------+

1 row in set (0.02 sec)


mysql> INSERT INTO order1(id,sn,create_time) VALUES(3,'SHH001',NOW());

Query OK, 1 row affected (0.04 sec)


mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (3,3,'1','test data of order1(id=3,SHH001)',NOW());

Query OK, 1 row affected (0.06 sec)


第三組廣州的訂單:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW());

+-----------+----------------------------------------------------------------+

| DATA_NODE | SQL                                                            |

+-----------+----------------------------------------------------------------+

| dn2       | INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW()) |

+-----------+----------------------------------------------------------------+

1 row in set (0.00 sec)


mysql> INSERT INTO order1(id,sn,create_time) VALUES(4,'GZH004',NOW());

Query OK, 1 row affected (0.06 sec)


mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (4,4,'1','test data  of order1(id=4,GZH004) ',NOW());

Query OK, 1 row affected (0.05 sec)


第四組 武漢的訂單,這裏故意將order_id設置成4,看看效果,是否隨id爲4的廣州的那組分片:

mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(5,'WUHAN005',NOW());

+-----------+------------------------------------------------------------------+

| DATA_NODE | SQL                                                              |

+-----------+------------------------------------------------------------------+

| dn3       | INSERT INTO order1(id,sn,create_time) VALUES(5,'WUHAN005',NOW()) |

+-----------+------------------------------------------------------------------+

1 row in set (0.01 sec)


    


mysql> explain INSERT INTO order1(id,sn,create_time) VALUES(6,'WUHAN006',NOW());

Query OK, 1 row affected (0.03 sec)



mysql> INSERT INTO ORDER_DETAIL(id,order_id,ord_status,address,create_time) VALUES (6,4,'1','test data  of order1(id=6,WUHAN006) ',NOW());

Query OK, 1 row affected (0.05 sec)




經過DBLE,查看下數據寫入的狀況:

(testdb) > select * from order1;

+----+--------+---------------------+

| id | sn     | create_time         |

+----+--------+---------------------+

|  1 | BJ0001 | 2019-08-31 23:05:36 |

|  4 | GZH004 | 2019-08-31 23:06:57 |

|  3 | SHH001 | 2019-08-31 23:06:43 |

+----+--------+---------------------+

3 rows in set (0.01 sec)


(testdb) > select * from order_detail ;

+----+----------+------------+--------------------------------------+---------------------+

| id | order_id | ord_status | address                              | create_time         |

+----+----------+------------+--------------------------------------+---------------------+

|  1 |        1 | 1          | test data  of ORDER1(ID=1,BJ001)     | 2019-08-31 23:06:17 |

|  4 |        4 | 1          | test data  of ORDER1(ID=4,GZH004)    | 2019-08-31 23:07:01 |

|  6 |        4 | 1          | test data  of ORDER1(ID=6,WUHAN006)  | 2019-08-31 23:07:23 |

|  3 |        3 | 1          | test data of ORDER1(ID=3,SHH001)     | 2019-08-31 23:06:47 |

+----+----------+------------+--------------------------------------+---------------------+

4 rows in set (0.01 sec)



直連後端的db1,看下數據狀況 (db2 和 db3 上面的數據查看,使用一樣的方法);

((none)) > select * from db1.order1;

+----+--------+---------------------+

| id | sn     | create_time         |

+----+--------+---------------------+

|  3 | SHH001 | 2019-08-31 23:06:43 |

+----+--------+---------------------+

1 row in set (0.00 sec)


((none)) > select * from db1.order_detail;

+----+----------+------------+----------------------------------+---------------------+

| id | order_id | ord_status | address                          | create_time         |

+----+----------+------------+----------------------------------+---------------------+

|  3 |        3 | 1          | test data of ORDER1(ID=3,SHH001) | 2019-08-31 23:06:47 |

+----+----------+------------+----------------------------------+---------------------+

1 row in set (0.00 sec)




2.6 走DBLE,模擬下業務的查詢:

(testdb) > explain select t1.*,t2.* from order1 t1,order_detail t2 where t2.ord_status='1' and t2.id=1 and t1.id=t2.order_id;

+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

| DATA_NODE       | TYPE          | SQL/REF                                                                                                                                                                                                                                                      |

+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

| dn1_0           | BASE SQL      | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from  `order1` `t1` join  `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |

| dn2_0           | BASE SQL      | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from  `order1` `t1` join  `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |

| dn3_0           | BASE SQL      | select `t2`.`id`,`t2`.`order_id`,`t2`.`ord_status`,`t2`.`address`,`t2`.`create_time`,`t1`.`id`,`t1`.`sn`,`t1`.`create_time` from  `order1` `t1` join  `order_detail` `t2` on `t1`.`id` = `t2`.`order_id` where (`t2`.`ord_status` = '1') AND (`t2`.`id` = 1) |

| merge_1         | MERGE         | dn1_0; dn2_0; dn3_0                                                                                                                                                                                                                                          |

| shuffle_field_1 | SHUFFLE_FIELD | merge_1                                                                                                                                                                                                                                                      |

+-----------------+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

5 rows in set (0.00 sec)



(testdb) > SELECT

  t1.*,

  t2.*

FROM

  order1 t1,

  order_detail t2

WHERE t2.ord_status = '1'

  AND t2.id = 1

  AND t1.id = t2.order_id ;

+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+

| id | sn     | create_time         | id | order_id | ord_status | address                           | create_time         |

+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+

|  1 | BJ0001 | 2019-08-31 23:05:36 |  1 |        1 | 1          | test data  of ORDER1(ID=1,BJ001)  | 2019-08-31 23:06:17 |

+----+--------+---------------------+----+----------+------------+-----------------------------------+---------------------+

1 row in set (0.00 sec)




2.7 總結:當子表與父表的關聯字段正好是父表的分片字段時,子表直接根據父表規則進行分片,在數據錄入的時候子表直接放在父表的分片上面,在進行關聯查詢join的時候,走的是父表的路由。


【重要】其它的總結:

當子表與父表的關聯字段不是父表的分片字段時,必須經過查找對應的父表記錄來確認子表所在分片,若是找不到則會拋出錯誤,在join查詢的時候,路由走的是全部分片節點!!!!

相關文章
相關標籤/搜索