學習推薦系統必看的10篇RecSys論文,收藏!(官方推薦)

先薦導讀:深刻學習任何一門學科,都離不開對前沿知識的瞭解。對於推薦系統學習者來講,一年一度的RecSys大會就是了解學術界與工業界研究熱點的最佳平臺。鑑於此,在這篇文章中,咱們把過往的RecSys論文整理成一個清單,列出了你們學習推薦系統必看的10篇RecSys論文。

下邊這5篇是根據ACM數字圖書館中的閱讀量整理出來的。在已發表的925篇論文中,這五篇論文是閱讀量最高的。這五篇論文約佔全部RecSys會議論文引用的12%!微信

· Performance of recommender algorithms on top-n recommendation tasks — 2010, by Paolo Cremonesi, Yehuda Koren, Roberto Turrin網絡

· Trust-aware recommender systems — 2007, by Paolo Massa, Paolo Avesaniapp

· A matrix factorization technique with trust propagation for recommendation in social networks — 2010, by Mohsen Jamali, Martin Ester運維

· Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering — 2010, by Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, Nuria Oliverpost

· Hidden factors and hidden topics: understanding rating dimensions with review text — 2013, by Julian McAuley, Jure Leskovec學習

自從2009年以來,每年的ACM RecSys大會還會爲當年做出較大貢獻的論文進行頒獎,接下來的5篇論文在近5年內被評爲了「最佳論文」。ui

· Modeling the Assimilation-Contrast Effects in Online Product Rating Systems: Debiasing and Recommendations — 2017, by X. Zhang, J. Zhao, J.C.S. Lui人工智能

· Local Item-Item Models for Top-N Recommendation — 2016, by E. Christakopoulou and G. Karypisspa

· Context-Aware Event Recommendation in Event-based Social Networks— 2015, by A. Macedo, L. Marinho and R. Santos3d

· Beyond Clicks: Dwell Time for Personalization — 2014, by X. Yi, L. Hong, E. Zhong, N. Nan Liu and S. Rajan

· A Fast Parallel SGD for Matrix Factorization in Shared Memory Systems— 2013, by Y. Zhuang, W. Chin, Y. Juan and C. Lin (Best Paper)


如欲申請產品試用,歡迎添加先薦小助手微信號(ID:recsysfc)

本帳號爲第四範式智能推薦產品先薦的官方帳號。帳號立足於計算機領域,特別是人工智能相關的前沿研究,旨在把更多與人工智能相關的知識分享給公衆,從專業的角度促進公衆對人工智能的理解;同時也但願爲人工智能相關人員提供一個討論、交流、學習的開放平臺,從而早日讓每一個人都享受到人工智能創造的價值。

相關文章
相關標籤/搜索