算法(Algorithm)是指用來操做數據、解決程序問題的一組方法。對於同一個問題,使用不一樣的算法,也許最終獲得的結果是同樣的,但在過程當中消耗的資源和時間卻會有很大的區別。java
那麼咱們應該如何去衡量不一樣算法之間的優劣呢?算法
主要仍是從算法所佔用的「時間」和「空間」兩個維度去考量。數組
時間維度:是指執行當前算法所消耗的時間,咱們一般用「時間複雜度」來描述。性能
空間維度:是指執行當前算法須要佔用多少內存空間,咱們一般用「空間複雜度」來描述。測試
所以,評價一個算法的效率主要是看它的時間複雜度和空間複雜度狀況。然而,有的時候時間和空間卻又是「魚和熊掌」,不可兼得的,那麼咱們就須要從中去取一個平衡點。spa
下面我來分別介紹一下「時間複雜度」和「空間複雜度」的計算方式。code
咱們想要知道一個算法的「時間複雜度」,不少人首先想到的的方法就是把這個算法程序運行一遍,那麼它所消耗的時間就天然而然知道了。這種方式能夠嗎?固然能夠,不過它也有不少弊端。blog
這種方式很是容易受運行環境的影響,在性能高的機器上跑出來的結果與在性能低的機器上跑的結果相差會很大。並且對測試時使用的數據規模也有很大關係。再者,並咱們在寫算法的時候,尚未辦法完整的去運行呢。所以,另外一種更爲通用的方法就出來了:「 大O符號表示法 」,即 T(n) = O(f(n))內存
咱們先來看個例子:資源
for(i=1; i<=n; ++i) { j = i; j++; }
經過「 大O符號表示法 」,這段代碼的時間複雜度爲:O(n) ,爲何呢?
在 大O符號表示法中,時間複雜度的公式是: T(n) = O( f(n) ),其中f(n) 表示每行代碼執行次數之和,而 O 表示正比例關係,這個公式的全稱是:算法的漸進時間複雜度 。
咱們繼續看上面的例子,假設每行代碼的執行時間都是同樣的,咱們用 1顆粒時間 來表示,那麼這個例子的第一行耗時是1個顆粒時間,第三行的執行時間是 n個顆粒時間,第四行的執行時間也是 n個顆粒時間(第二行和第五行是符號,暫時忽略),那麼總時間就是 1顆粒時間 + n顆粒時間 + n顆粒時間 ,即 (1+2n)個顆粒時間,即: T(n) = (1+2n)*顆粒時間,從這個結果能夠看出,這個算法的耗時是隨着n的變化而變化,所以,咱們能夠簡化的將這個算法的時間複雜度表示爲:T(n) = O(n)。
爲何能夠這麼去簡化呢,由於大O符號表示法並非用於來真實表明算法的執行時間的,它是用來表示代碼執行時間的增加變化趨勢的。
因此上面的例子中,若是n無限大的時候,T(n) = time(1+2n)中的常量1就沒有意義了,倍數2也意義不大。所以直接簡化爲T(n) = O(n) 就能夠了。
常見的時間複雜度量級有:
常數階O(1)
對數階O(logN)
線性階O(n)
線性對數階O(nlogN)
平方階O(n²)
立方階O(n³)
K次方階O(n^k)
指數階(2^n)
上面從上至下依次的時間複雜度愈來愈大,執行的效率愈來愈低。
下面選取一些較爲經常使用的來說解一下(沒有嚴格按照順序):
不管代碼執行了多少行,只要是沒有循環等複雜結構,那這個代碼的時間複雜度就都是O(1),如:
int i = 1; int j = 2; ++i; j++; int m = i + j;
上述代碼在執行的時候,它消耗的時候並不隨着某個變量的增加而增加,那麼不管這類代碼有多長,即便有幾萬幾十萬行,均可以用O(1)來表示它的時間複雜度。
這個在最開始的代碼示例中就講解過了,如:
for(i=1; i<=n; ++i) { j = i; j++; }
這段代碼,for循環裏面的代碼會執行n遍,所以它消耗的時間是隨着n的變化而變化的,所以這類代碼均可以用O(n)來表示它的時間複雜度。
仍是先來看代碼:
int i = 1; while(i<n) { i = i * 2; }
從上面代碼能夠看到,在while循環裏面,每次都將 i 乘以 2,乘完以後,i 距離 n 就愈來愈近了。咱們試着求解一下,假設循環x次以後,i 就大於 2 了,此時這個循環就退出了,也就是說 2 的 x 次方等於 n,那麼 x = log2^n
也就是說當循環 log2^n 次之後,這個代碼就結束了。所以這個代碼的時間複雜度爲:O(logn)
線性對數階O(nlogN) 其實很是容易理解,將時間複雜度爲O(logn)的代碼循環N遍的話,那麼它的時間複雜度就是 n * O(logN),也就是了O(nlogN)。
就拿上面的代碼加一點修改來舉例:
for(m=1; m<n; m++) { i = 1; while(i<n) { i = i *
平方階O(n²) 就更容易理解了,若是把 O(n) 的代碼再嵌套循環一遍,它的時間複雜度就是 O(n²) 了。
舉例:
for(x=1; i<=n; x++) { for(i=1; i<=n; i++) { j = i; j++; } }
這段代碼其實就是嵌套了2層n循環,它的時間複雜度就是 O(n*n),即 O(n²)
若是將其中一層循環的n改爲m,即:
for(x=1; i<=m; x++) { for(i=1; i<=n; i++) { j = i; j++; } }
那它的時間複雜度就變成了 O(m*n)
參考上面的O(n²) 去理解就行了,至關於三層n循環,其它的相似。
除此以外,其實還有 平均時間複雜度、均攤時間複雜度、最壞時間複雜度、最好時間複雜度 的分析方法,有點複雜,這裏就不展開了。
既然時間複雜度不是用來計算程序具體耗時的,那麼我也應該明白,空間複雜度也不是用來計算程序實際佔用的空間的。空間複雜度是對一個算法在運行過程當中臨時佔用存儲空間大小的一個量度,一樣反映的是一個趨勢,咱們用 S(n) 來定義。
空間複雜度比較經常使用的有:O(1)、O(n)、O(n²),咱們下面來看看:
若是算法執行所須要的臨時空間不隨着某個變量n的大小而變化,即此算法空間複雜度爲一個常量,可表示爲 O(1)
舉例:
int i = 1; int j = 2; ++i; j++; int m = i + j;
代碼中的 i、j、m 所分配的空間都不隨着處理數據量變化,所以它的空間複雜度 S(n) = O(1)
咱們先看一個代碼:
int[] m = new int[n] for(i=1; i<=n; ++i) { j = i; j++; }
這段代碼中,第一行new了一個數組出來,這個數據佔用的大小爲n,這段代碼的2-6行,雖然有循環,但沒有再分配新的空間,所以,這段代碼的空間複雜度主要看第一行便可,即 S(n) = O(n)
原文參考【Java知音網】