基於官方的須要改版app
一、改成有界,官方是吧全部任務添加到線程池的queue隊列中,這樣內存會變大,也不符合分佈式的邏輯(會把中間件的全部任務一次性取完,放到本地的queue隊列中,致使分佈式變差)分佈式
二、直接打印錯誤。官方的threadpolexcutor執行的函數,若是不設置回調,即便函數中出錯了,本身都不會知道。函數
# coding=utf-8 """ 一個有界任務隊列的thradpoolexcutor 直接捕獲錯誤日誌 """ from functools import wraps import queue from concurrent.futures import ThreadPoolExecutor, Future # noinspection PyProtectedMember from concurrent.futures.thread import _WorkItem from app.utils_ydf import LoggerMixin, LogManager logger = LogManager('BoundedThreadPoolExecutor').get_logger_and_add_handlers() def _deco(f): @wraps(f) def __deco(*args, **kwargs): try: return f(*args, **kwargs) except Exception as e: logger.exception(e) return __deco class BoundedThreadPoolExecutor(ThreadPoolExecutor, ): def __init__(self, max_workers=None, thread_name_prefix=''): ThreadPoolExecutor.__init__(self, max_workers, thread_name_prefix) self._work_queue = queue.Queue(max_workers * 2) def submit(self, fn, *args, **kwargs): with self._shutdown_lock: if self._shutdown: raise RuntimeError('cannot schedule new futures after shutdown') f = Future() fn_deco = _deco(fn) w = _WorkItem(f, fn_deco, args, kwargs) self._work_queue.put(w) self._adjust_thread_count() return f if __name__ == '__main__': def fun(): print(1 / 0) pool = BoundedThreadPoolExecutor(10) pool.submit(fun)