OS: CentOS-6.5-x86_64
JDK: jdk-8u111-linux-x64
Hadoop: hadoop-2.6.5html
//查看當前主機名 # hostname //修改當前主機名 # vim /etc/sysconfig/network NETWORKING 是否利用網絡 GATEWAY 默認網關 IPGATEWAYDEV 默認網關的接口名 HOSTNAME 主機名 DOMAIN 域名
# vim /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE 接口名(設備,網卡) BOOTPROTO IP的配置方法(static:固定IP, dhcpHCP, none:手動) HWADDR MAC地址 ONBOOT 系統啓動的時候網絡接口是否有效(yes/no) TYPE 網絡類型(一般是Ethemet) NETMASK 網絡掩碼 IPADDR IP地址 IPV6INIT IPV6是否有效(yes/no) GATEWAY 默認網關IP地址 DNS1 DNS2
個人配置以下:java
DEVICE=eth0 HWADDR=00:0C:29:D3:53:77 TYPE=Ethernet UUID=84d51ff5-228e-44ae-812d-7e59aa190715 ONBOOT=yes NM_CONTROLLED=yes BOOTPROTO=static IPADDR=192.168.1.10 GATEWAY=192.168.1.1 //虛擬機下NAT網絡模式這兩項不用配置 DNS1=202.204.65.5 DNS2=202.204.65.6
# vim /etc/hosts 192.168.1.10 master 192.168.1.11 slave1 192.168.1.12 slave2
//臨時關閉 # service iptables stop //永久關閉 # chkconfig iptables off # service ip6tables stop # chkconfig ip6tables off
# vim /etc/sysconfig/selinux SELINUX=enforcing //更改成以下配置 SELINUX=disable
接着執行以下命令node
# setenforce 0 # getenforce
若是隻有root
用戶或者沒有hadoop
用戶的狀況下:linux
//新增用戶 # useradd hadoop //設置密碼 # passwd hadoop //根據提示輸入兩次密碼
在全部節點執行一直按回車就能夠了。git
$ su hadoop $ ssh-keygen -t rsa
將msater
的id_rsa.pub
追加到受權key中(只須要將master
節點的公鑰追加到authorized_keys
)web
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
shell
更改authorized_keys
的權限,分別在全部節點操做apache
chomd 600 authorized_keys
vim
將authorized_keys
複製到全部slave
節點segmentfault
$ scp ~/.ssh/authorized_keys hadoop@192.168.1.11:~/.ssh/ $ scp ~/.ssh/authorized_keys hadoop@192.168.1.12:~/.ssh/
master
免密鑰登錄全部slave
節點
$ ssh slave1 $ ssh slave2
$ tar -zvxf hadoop-2.6.5.tar.gz $ mv hadoop-2.6.5 ~/cloud/ $ ln -s /home/hadoop/cloud/hadoop-2.6.5 /home/hadoop/cloud/hadoop
在尾部追加
# vim /etc/profile # set hadoop environment export HADOOP_HOME=/home/hadoop/cloud/hadoop export HADOOP_COMMON_HOME=$HADOOP_HOME export HADOOP_HDFS_HOME=$HADOOP_HOME export HADOOP_MAPRED_HOME=$HADOOP_HOME export HADOOP_YARN_HOME=$HADOOP_HOME export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop export CLASSPATH=.:$JAVA_HOME/lib:$HADOOP_HOME/lib:$CLASSPATH export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
使環境變量當即生效注意在哪一個用戶下執行該命令,環境變量在那個用戶下生效
# su hadoop $ source /etc/profile
注意:hadoop_tmp文件夾必定要配置在存儲空間比較大的位置,不然會報錯
可能出現的問題:
(1)Unhealthy Nodes 問題
http://blog.csdn.net/korder/a...
(2)local-dirs turned bad
(3)Hadoop運行任務時一直卡在: INFO mapreduce.Job: Running job
http://www.bkjia.com/yjs/1030...
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://master:9000</value> </property> <property> <name>hadoop.tmp.dir</name> <value>file:/home/hadoop/cloud/hadoop/hadoop_tmp</value> <!--須要本身建立hadoop_tmp文件夾--> </property> <property> <name>io.file.buffer.size</name> <value>131072</value> </property> <property> <name>hbase.rootdir</name> <value>hdfs://master:9000/hbase</value> </property> </configuration>
<configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.namenode.secondary.http-address</name> <value>master:9001</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>file:/home/hadoop/cloud/hadoop/dfs/name</value> <description>namenode上存儲hdfs元數據</description> </property> <property> <name>dfs.datanode.data.dir</name> <value>file:/home/hadoop/cloud/hadoop/dfs/data</value> <description>datanode上數據塊物理存儲位置</description> </property> <property> <name>dfs.webhdfs.enabled</name> <value>true</value> </property> </configuration>
注:訪問namenode的 webhdfs 使用50070端口,訪問datanode的webhdfs使用50075端口。要想不區分端口,直接使用namenode的IP和端口進行全部webhdfs操做,就須要在全部
datanode上都設置hdfs-site.xml中dfs.webhdfs.enabled爲true。
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>master:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>master:19888</value> </property> <property> <name>mapreduce.jobtracker.http.address</name> <value>NameNode:50030</value> </property> </configuration>
jobhistory是Hadoop自帶一個歷史服務器,記錄Mapreduce歷史做業。默認狀況下,jobhistory沒有啓動,可用如下命令啓動:
$ sbin/mr-jobhistory-daemon.sh start historyserver
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.address</name> <value>master:8032</value> </property> <property> <name>yarn.resourcemanager.scheduler.address</name> <value>master:8030</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address</name> <value>master:8031</value> </property> <property> <name>yarn.resourcemanager.admin.address</name> <value>master:8033</value> </property> <property> <name>yarn.resourcemanager.webapp.address</name> <value>master:8088</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>master:2181,slave1L2181,slave2:2181</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> </configuration>
修改slaves
文件,添加datanode節點hostname到slaves文件中
slave1 slave2
vim /home/hadoop/cloud/hadoop/etc/hadoop/hadoop-env.sh export JAVA_HOME=${JAVA_HOME} -> export JAVA_HOME=/usr/java export HADOOP_COMMON_LIB_NATIVE_DIR=/home/hadoop/hadoop/lib/native
最後,將整個/home/hadoop/cloud/hadoop-2.6.5文件夾及其子文件夾使用scp複製到Slave相同目錄中:
$ scp -r /home/hadoop/cloud/hadoop-2.6.5 hadoop@slave1:/home/hadoop/cloud/ $ scp -r /home/hadoop/cloud/hadoop-2.6.5 hadoop@slave2:/home/hadoop/cloud/
確保配置文件中各文件夾已經建立
$ hdfs namenode –format
成功後顯示信息
************************************************************/ 17/09/09 04:27:03 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT] 17/09/09 04:27:03 INFO namenode.NameNode: createNameNode [-format] 17/09/09 04:27:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Formatting using clusterid: CID-243cecfb-c003-4213-8112-b5f227616e39 17/09/09 04:27:04 INFO namenode.FSNamesystem: No KeyProvider found. 17/09/09 04:27:04 INFO namenode.FSNamesystem: fsLock is fair:true 17/09/09 04:27:04 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000 17/09/09 04:27:04 INFO blockmanagement.DatanodeManager: dfs.namenode.datanode.registration.ip-hostname-check=true 17/09/09 04:27:04 INFO blockmanagement.BlockManager: dfs.namenode.startup.delay.block.deletion.sec is set to 000:00:00:00.000 17/09/09 04:27:04 INFO blockmanagement.BlockManager: The block deletion will start around 2017 Sep 09 04:27:04 17/09/09 04:27:04 INFO util.GSet: Computing capacity for map BlocksMap 17/09/09 04:27:04 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:04 INFO util.GSet: 2.0% max memory 889 MB = 17.8 MB 17/09/09 04:27:04 INFO util.GSet: capacity = 2^21 = 2097152 entries 17/09/09 04:27:04 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false 17/09/09 04:27:04 INFO blockmanagement.BlockManager: defaultReplication = 2 17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxReplication = 512 17/09/09 04:27:04 INFO blockmanagement.BlockManager: minReplication = 1 17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxReplicationStreams = 2 17/09/09 04:27:04 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000 17/09/09 04:27:04 INFO blockmanagement.BlockManager: encryptDataTransfer = false 17/09/09 04:27:04 INFO blockmanagement.BlockManager: maxNumBlocksToLog = 1000 17/09/09 04:27:04 INFO namenode.FSNamesystem: fsOwner = hadoop (auth:SIMPLE) 17/09/09 04:27:04 INFO namenode.FSNamesystem: supergroup = supergroup 17/09/09 04:27:04 INFO namenode.FSNamesystem: isPermissionEnabled = false 17/09/09 04:27:04 INFO namenode.FSNamesystem: HA Enabled: false 17/09/09 04:27:04 INFO namenode.FSNamesystem: Append Enabled: true 17/09/09 04:27:05 INFO util.GSet: Computing capacity for map INodeMap 17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:05 INFO util.GSet: 1.0% max memory 889 MB = 8.9 MB 17/09/09 04:27:05 INFO util.GSet: capacity = 2^20 = 1048576 entries 17/09/09 04:27:05 INFO namenode.NameNode: Caching file names occuring more than 10 times 17/09/09 04:27:05 INFO util.GSet: Computing capacity for map cachedBlocks 17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:05 INFO util.GSet: 0.25% max memory 889 MB = 2.2 MB 17/09/09 04:27:05 INFO util.GSet: capacity = 2^18 = 262144 entries 17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033 17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0 17/09/09 04:27:05 INFO namenode.FSNamesystem: dfs.namenode.safemode.extension = 30000 17/09/09 04:27:05 INFO namenode.FSNamesystem: Retry cache on namenode is enabled 17/09/09 04:27:05 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis 17/09/09 04:27:05 INFO util.GSet: Computing capacity for map NameNodeRetryCache 17/09/09 04:27:05 INFO util.GSet: VM type = 64-bit 17/09/09 04:27:05 INFO util.GSet: 0.029999999329447746% max memory 889 MB = 273.1 KB 17/09/09 04:27:05 INFO util.GSet: capacity = 2^15 = 32768 entries 17/09/09 04:27:05 INFO namenode.NNConf: ACLs enabled? false 17/09/09 04:27:05 INFO namenode.NNConf: XAttrs enabled? true 17/09/09 04:27:05 INFO namenode.NNConf: Maximum size of an xattr: 16384 17/09/09 04:27:05 INFO namenode.FSImage: Allocated new BlockPoolId: BP-706635769-192.168.32.100-1504902425219 17/09/09 04:27:05 INFO common.Storage: Storage directory /home/hadoop/cloud/hadoop/dfs/name has been successfully formatted. 17/09/09 04:27:05 INFO namenode.FSImageFormatProtobuf: Saving image file /home/hadoop/cloud/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression 17/09/09 04:27:05 INFO namenode.FSImageFormatProtobuf: Image file /home/hadoop/cloud/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 323 bytes saved in 0 seconds. 17/09/09 04:27:05 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0 17/09/09 04:27:05 INFO util.ExitUtil: Exiting with status 0 17/09/09 04:27:05 INFO namenode.NameNode: SHUTDOWN_MSG: /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at master/192.168.32.100 ************************************************************/
$ start-dfs.sh $ start-yarn.sh //能夠用一條命令來代替: $ start-all.sh
jps
查看進程(1)master
主節點進程:
8193 Jps 7943 ResourceManager 7624 NameNode 7802 SecondaryNameNode
(2)slave
數據節點進程:
1413 DataNode 1512 NodeManager 1626 Jps
概覽:http://172.16.1.156:50070/
集羣:http://172.16.1.156:8088/
JobHistory:http://172.16.1.156:19888
jobhistory是Hadoop自帶一個歷史服務器,記錄Mapreduce歷史做業。默認狀況下,jobhistory沒有啓動,可用如下命令啓動:
$ sbin/mr-jobhistory-daemon.sh start historyserver
運行wordcount
$ vi wordcount.txt hello you hello me hello everyone
$ hadoop fs -mkdir /data/wordcount $ hadoop fs –mkdir /output/
目錄/data/wordcount用來存放Hadoop自帶WordCount例子的數據文件,運行這個MapReduce任務結果輸出到/output/wordcount目錄中。
$ hadoop fs -put wordcount.txt/data/wordcount/
$ hadoop jar /home/hadoop/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.1.jar wordcount /data/wordcount /output/wordcount/
# hadoop fs -text /output/wordcount/part-r-00000 everyone 1 hello 3 me 1 you 1
在配置環境變量過程可能遇到輸入命令ls命令不能識別問題:ls -bash: ls: command not found
緣由:在設置環境變量時,編輯profile文件沒有寫正確,將export PATH=$JAVA_HOME/bin:$PATH中冒號誤寫成分號 ,致使在命令行下ls等命令不可以識別。解決方案:export PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin
在主機上啓動hadoop集羣,而後使用jps查看主從機上進程狀態,可以看到主機上的resourcemanager和各個從機上的nodemanager,可是過一段時間後,從機上的nodemanager就沒有了,主機上的resourcemanager還在。
緣由是防火牆處於開啓狀態:
注:nodemanager啓動後要經過心跳機制按期與RM通訊,不然RM會認爲NM死掉,會中止NM服務。
sshd服務中設置了UseDNS yes,當配置的DNS服務器出現沒法訪問的問題,可能會形成鏈接該服務器須要等待10到30秒的時間。因爲使用UseDNS,sshd服務器會反向解析鏈接客戶端的ip,即便是在局域網中也會。
當平時鏈接都是很快,忽然變的異常的慢,多是sshd服務的服務器上配置的DNS失效,例如DNS配置的是外網的,而此時外面故障斷開。終極解決方案是不要使用UseDNS,在配置文件/etc/sshd_config(有些linux發行版在/etc/ssh/sshd_config)中找到UseDNS 設置其值爲 no,若是前面有#號,須要去掉,重啓sshd服務器便可。
vim /etc/ssh/sshd_config UseDNS no
FATAL org.apache.hadoop.hdfs.server.namenode.NameNode: Exception in namenode join java.io.IOException: There appears to be a gap in the edit log. We expected txid 176531929, but got txid 176533587.
緣由:是由於namenode和datenode數據不一致引發的
解決辦法:刪除master slave節點data
和name
文件夾下的內容,便可解決。缺點是數據不可恢復。
另外一種解決辦法:http://blog.csdn.net/amber_am...
參考連接:
https://yq.aliyun.com/article...
https://taoistwar.gitbooks.io...
WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicable
I assume you're running Hadoop on 64bit CentOS. The reason you saw that warning is the native Hadoop library $HADOOP_HOME/lib/native/libhadoop.so.1.0.0 was actually compiled on 32 bit.Anyway, it's just a warning, and won't impact Hadoop's functionalities.
http://stackoverflow.com/ques...
(1)簡便的解決方法是:(後來我發現這兩步都要作)
下載64位的庫,解壓到hadoop-2.7.0/lib/native/,不在有警告
下載地址:http://dl.bintray.com/sequenc...
(2)修改hadoop-env.sh
export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=/usr/local/hadoop/lib/native" export HADOOP_COMMON_LIB_NATIVE_DIR="/usr/local/hadoop/lib/native/"
hadoop提交jar包卡住不會往下執行的解決方案,卡在此處:INFO mapreduce.Job: Running job: job_1474517485267_0001
這裏咱們在集羣的yarn-site.xml
中添加配置
<property> <name>yarn.nodemanager.resource.memory-mb</name> <value>4096</value> </property> <property> <name>yarn.scheduler.minimum-allocation-mb</name> <value>2048</value> </property> <property> <name>yarn.nodemanager.vmem-pmem-ratio</name> <value>2.1</value> </property>
從新啓動集羣,運行jar包便可
可是,並無解決個人問題,個人問題是Unhealthy Nodes
,最後才發現!!可能不添加上述配置原來配置也是對的。
http://www.voidcn.com/blog/ga...
2017年1月22日, 星期日
update: 2017-06-02
增長操做系統基本設置部分
修改部分配置文件內容
update:2017.10.11遷移到segmentfault