引子python
本節的主題是基於單線程來實現併發,即只用一個主線程(很明顯可利用的cpu只有一個)狀況下實現併發,爲此咱們須要先回顧下併發的本質:切換+保存狀態git
cpu正在運行一個任務,會在兩種狀況下切走去執行其餘的任務(切換由操做系統強制控制),一種狀況是該任務發生了阻塞,另一種狀況是該任務計算的時間過長或有一個優先級更高的程序替代了它github
ps:在介紹進程理論時,說起進程的三種執行狀態,而線程纔是執行單位,因此也能夠將上圖理解爲線程的三種狀態。編程
一:其中第二種狀況並不能提高效率,只是爲了讓cpu可以雨露均沾,實現看起來全部任務都被「同時」執行的效果,若是多個任務都是純計算的,這種切換反而會下降效率。爲此咱們能夠基於yield來驗證。yield自己就是一種在單線程下能夠保存任務運行狀態的方法,咱們來簡單複習一下:數組
1:yield 能夠保存狀態,yield的狀態保存與操做系統的保存線程狀態很像,可是yield是代碼級別的控制,更輕量級 2:send能夠把一個函數的結果傳給另外一個函數,以此實現單線程內程序之間的切換
串行執行多線程
import time def consumer(res): ''' 任務一 接受數據,處理數據 :param res: :return: ''' pass def product(): res=[] for i in range(10000000): res.append(i) return res start=time.time() # 串行執行 res=product() consumer(res) stop=time.time() print(stop-start) # # 基於yield import time def consumer(): while True: x=yield # print(x) #如果打印就是從product那裏傳給了consumer def product(): g=consumer() next(g) for i in range(100000): g.send(i) start=time.time() product() stop=time.time() print(stop-start)
二:第一種狀況的切換。在任務一遇到io狀況下,切到任務二去執行,這樣就能夠利用任務一時阻塞的時間去執行任務二的計算,效率的提高就在於此。併發
import time
def consumer():
'''任務1:接收數據,處理數據'''
while True:
x=yieldapp
def producer():
'''任務2:生產數據'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i)
time.sleep(2)異步
start=time.time()
producer() #併發執行,可是任務producer遇到io就會阻塞住,並不會切到該線程內的其餘任務去執行socket
stop=time.time()
print(stop-start)
yield並不能實現遇到io切換
對於單線程下,咱們不可避免程序中出現io操做,但若是咱們能在本身的程序中(即用戶程序級別,而非操做系統級別)控制單線程下的多個任務能在一個任務遇到io阻塞時就切換到另一個任務去計算,這樣就保證了該線程可以最大限度地處於就緒態,即隨時均可以被cpu執行的狀態,至關於咱們在用戶程序級別將本身的io操做最大限度地隱藏起來,從而能夠迷惑操做系統,讓其看到:該線程好像是一直在計算,io比較少,從而更多的將cpu的執行權限分配給咱們的線程。
協程的本質就是在單線程下,由用戶本身控制一個任務遇到io阻塞了就切換另一個任務去執行,以此來提高效率。爲了實現它,咱們須要找尋一種能夠同時知足如下條件的解決方案:
#1. 能夠控制多個任務之間的切換,切換以前將任務的狀態保存下來,以便從新運行時,能夠基於暫停的位置繼續執行。 #2. 做爲1的補充:能夠檢測io操做,在遇到io操做的狀況下才發生切換
二協程介紹
協程:是單線程下的併發,又稱微線程,纖程。英文名Coroutine。一句話說明什麼是線程:協程是一種用戶態的輕量級線程,即協程是由用戶程序本身控制調度的。
須要強調的是:
#1. python的線程屬於內核級別的,即由操做系統控制調度(如單線程遇到io或執行時間過長就會被迫交出cpu執行權限,切換其餘線程運行) #2. 單線程內開啓協程,一旦遇到io,就會從應用程序級別(而非操做系統)控制切換,以此來提高效率(!!!非io操做的切換與效率無關)
對比操做系統控制線程的切換,用戶在單線程內控制協程的切換
優勢以下:
1.協程的切換更小,屬於程序級別的切換,操做系統徹底感受不到,於是更加輕量級
2.單線程內就能夠實現併發的效果,最大限度地利用cpu
缺點以下:
1。協程的本質就是單線程下,沒法利用多核,能夠是一個程序開啓多個進程,每一個進程內開啓多個線程,每一個線程內在開啓協程
2。協程指的是單個線程,於是一旦協程出現阻塞,將會阻塞整個線程。
總結協程特色:
三 Greenlet
from greenlet import greenlet def eat(name): print('%s eat 1' %name) g2.switch('egon') print('%s eat 2' %name) g2.switch() def play(name): print('%s play 1' %name) g1.switch() print('%s play 2' %name) g1=greenlet(eat) g2=greenlet(play) g1.switch('egon')#能夠在第一次switch時傳入參數,之後都不須要
單純的切換(在沒有io狀況下或者沒有重複開闢內存空間的操做),反而會下降程序的執行速度
#順序執行 import time def f1(): res=1 for I in range(100000): res+=I def f2(): res=1 for I in range(100000): res*=1 start=time。time() f1() f2() stop=time.time() print(stop-start)
# 切換 from greenlet import greenlet import time def f1(): res=1 for i in range(100000) res+=i g2。switch() def f2(): res=1 for I in range(100000) res*=I g1.switch() start=time.time() g1=greenlet(f1) g2=greenlet(f2) g1.switch() stop=time.time() print('run time is %s' %(stop-start)) # 52.763017892837524
greenlet只是提供了一種比generator更加便捷的切換方式,當切到一個任務執行時若是遇到io,那就原地阻塞,仍然是沒有解決遇到IO自動切換來提高效率的問題。
單線程裏的這20個任務的代碼一般會既有計算操做又有阻塞操做,咱們徹底能夠在執行任務1時遇到阻塞,就利用阻塞的時間去執行任務2。。。。如此,才能提升效率,這就用到了Gevent模塊。
四 Gevent介紹
Gevent 是一個第三方庫,能夠輕鬆經過gevent實現併發同步或異步編程,在gevent中用到的主要模式是Greenlet, 它是以C擴展模塊形式接入Python的輕量級協程。 Greenlet所有運行在主程序操做系統進程的內部,但它們被協做式地調度。
用法:
g1=gevent.spawn(fund,1,2,3,x=4,y=5) 建立一個協程對象g1,spawn括號內第一個參數是函數名,如eat,後面能夠有多個參數,能夠是位置實參,都是傳給函數eat的 g2=gevent.spawn(fund) g1.join() #等待g1結束 g2.join()#等待g2結束 #或者上述兩步合做一步:gevent.joinall([g1,g2]) g1.value#拿到fund的返回值
遇到IO阻塞時會自動切換任務
import gevent def eat(name): print('%s eat 1' %name) gevent.sleep(2) print('%s eat 2' %name) def play(name): print('%s play 1' %name) gevent.sleep(1) print('%s play 2' %name) g1=gevent.spawn(eat,'egon') g2=gevent.spawn(play,name='egon') g1.join() g2.join() #或者gevent.joinall([g1,g2]) print('主')
上列gevent.sleep(2)模擬的是gevent能夠識別的IO阻塞,而time.sleep(2)或其餘的阻塞,gevent是不能直接識別的須要用下面一行代碼,就能夠識別了
from gevent import monkey:monkey.path_all()必須放到被補丁者的前面,如time,socket模塊以前或者咱們乾脆記憶成:要用gevent,須要將from gevent import monkey :monkey.path_all()放到文件開頭
from gevent import monkey:monkey.path_all() import gevent import time def eat(): print('eat food 1') time.sleep(2) print('eat food 2‘) def play(): print('play 1') time.sleep() print('play 2') g1=gevent.spawn(eat) g2=gevent.spawn(paly) gevent.joinall([g1,g2]) print('主')
咱們能夠用threading.current_thread().getName()來查看每一個g1和g2,查看的結果爲DummyThread-n,即假線程。
五 Gevent之同步與異步
Gevent之同步與異步
from gevent import spawn,joinall,monkey;monkey.path_all() import time def task(pid) time.sleep(0.5) print('task %s done '%pid) def synchronous(): for I in range(10): task(i) def asynchronous(): g=[spawn(task,i) for I in range(10)] joinall(g) if __name__=='__main__' print('synchronous') synchronous() print('asynchronous') #上面程序的重要部分是將task函數封裝到Greenlet內部線程的gevent.spawn。初始化的 greenlet列表存放在數組threads中,此數組被傳給gevent.joinall函數,後者阻塞當前流程,並執行全部給定的greenlet。執行流程知會全部greenlet執行後纔會繼續向下走。
六 Gevent之應用舉例一
協程應用:爬蟲
from gevent import monkey; monkey.path_all() import gevent import requests import time def get_page(url): print('GET :%s'%url) response=requests.get(url) if response.status_code==200: print('%s bytes received from %s'%(Len(response.text),url) start_time=time.time() gevent.joinall([ gevent.spawn(get_page,'https://www.python.org/'), gevent.spawn(get_page,'https://www.yahoo.com/'), gevent.spawn(get_page,'https://github.com/'), ]) stop_time=time.time() print(‘run time is %s’%(stop_time-start_time))
七:Gevent之應用舉例二
經過gevent實現單線程下的socket併發(from gevent import monkey;monkey.path_all())必定要放入導入socket模塊以前,不然gevent沒法識別socket的阻塞
服務端:
from gevent import monkey;monkey.path_all() from socket import * import gevent #若是不想用monkey.path_all()打補丁,能夠用gevent自帶的socket #from gevent import socket #s=socket.socket() def sever(sever_ip,port) s=socket(AF_INET,SOCK_STEAM) s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) s.bind ((sever_ip,port)) s.listen(5) while True: conn,addr=s.accept() gevent.spawn(talk, conn,addr) def talk(conn,addr): try: while True: res=conn,recv(1024) print('client %s :%s msg:%s'%(adds[0],adds[1])) conn.send(res.upper()) except Exception as e: print(e) finally: conn.close() if __name__=='__main__' sever('127.0.0.1',8080)
客戶端
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' from socket import * client=socket(AF_INET,SOCK_STREAM) client.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue client.send(msg.encode('utf-8')) msg=client.recv(1024) print(msg.decode('utf-8'))
多線程併發多個客戶端
from threading import Tread from socket import * import threading def client(sever_ip,port): c=socket(AF_INET,SOCK_STREAM) #套接字對象必定要加到函數內,即局部名稱空間內,放在函數外被全部線程共享,則你們共用一個套接字對象,那麼客戶端端口。 c.connect((sever_ip,port)) count=0 while True: c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8')) msg=c.recv(1024) print(msg.decode('utf-8')) count+=1 if __name__=="__main__" for I in range(500): t=Thread(target=client,args=('127.0.0.1',8080)) t.start()