咱們先看下 HBase 的寫流程: html
一般 MapReduce 在寫HBase時使用的是 TableOutputFormat 方式,在reduce中直接生成put對象寫入HBase,該方式在大數據量寫入時效率低下(HBase會block寫入,頻繁進行flush,split,compact等大量IO操做),並對HBase節點的穩定性形成必定的影響(GC時間過長,響應變慢,致使節點超時退出,並引發一系列連鎖反應),而HBase支持 bulk load 的入庫方式,它是利用hbase的數據信息按照特定格式存儲在hdfs內這一原理,直接在HDFS中生成持久化的HFile數據格式文件,而後上傳至合適位置,即完成巨量數據快速入庫的辦法。配合mapreduce完成,高效便捷,並且不佔用region資源,增添負載,在大數據量寫入時能極大的提升寫入效率,並下降對HBase節點的寫入壓力。
經過使用先生成HFile,而後再BulkLoad到Hbase的方式來替代以前直接調用HTableOutputFormat的方法有以下的好處:
(1)消除了對HBase集羣的插入壓力
(2)提升了Job的運行速度,下降了Job的執行時間
目前此種方式僅僅適用於只有一個列族的狀況,在新版 HBase 中,單列族的限制會消除。 java
下面給出相應的範例代碼: apache
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.HBaseConfiguration; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.client.HTable; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat; import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer; import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class GeneratePutHFileAndBulkLoadToHBase { public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private Text wordText=new Text(); private IntWritable one=new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub String line=value.toString(); String[] wordArray=line.split(" "); for(String word:wordArray) { wordText.set(word); context.write(wordText, one); } } } public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result=new IntWritable(); protected void reduce(Text key, Iterable<IntWritable> valueList, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub int sum=0; for(IntWritable value:valueList) { sum+=value.get(); } result.set(sum); context.write(key, result); } } public static class ConvertWordCountOutToHFileMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub String wordCountStr=value.toString(); String[] wordCountArray=wordCountStr.split("\t"); String word=wordCountArray[0]; int count=Integer.valueOf(wordCountArray[1]); //建立HBase中的RowKey byte[] rowKey=Bytes.toBytes(word); ImmutableBytesWritable rowKeyWritable=new ImmutableBytesWritable(rowKey); byte[] family=Bytes.toBytes("cf"); byte[] qualifier=Bytes.toBytes("count"); byte[] hbaseValue=Bytes.toBytes(count); // Put 用於列簇下的多列提交,若只有一個列,則可使用 KeyValue 格式 // KeyValue keyValue = new KeyValue(rowKey, family, qualifier, hbaseValue); Put put=new Put(rowKey); put.add(family, qualifier, hbaseValue); context.write(rowKeyWritable, put); } } public static void main(String[] args) throws Exception { // TODO Auto-generated method stub Configuration hadoopConfiguration=new Configuration(); String[] dfsArgs = new GenericOptionsParser(hadoopConfiguration, args).getRemainingArgs(); //第一個Job就是普通MR,輸出到指定的目錄 Job job=new Job(hadoopConfiguration, "wordCountJob"); job.setJarByClass(GeneratePutHFileAndBulkLoadToHBase.class); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(dfsArgs[0])); FileOutputFormat.setOutputPath(job, new Path(dfsArgs[1])); //提交第一個Job int wordCountJobResult=job.waitForCompletion(true)?0:1; //第二個Job以第一個Job的輸出作爲輸入,只須要編寫Mapper類,在Mapper類中對一個job的輸出進行分析,並轉換爲HBase須要的KeyValue的方式。 Job convertWordCountJobOutputToHFileJob=new Job(hadoopConfiguration, "wordCount_bulkload"); convertWordCountJobOutputToHFileJob.setJarByClass(GeneratePutHFileAndBulkLoadToHBase.class); convertWordCountJobOutputToHFileJob.setMapperClass(ConvertWordCountOutToHFileMapper.class); //ReducerClass 無需指定,框架會自行根據 MapOutputValueClass 來決定是使用 KeyValueSortReducer 仍是 PutSortReducer //convertWordCountJobOutputToHFileJob.setReducerClass(KeyValueSortReducer.class); convertWordCountJobOutputToHFileJob.setMapOutputKeyClass(ImmutableBytesWritable.class); convertWordCountJobOutputToHFileJob.setMapOutputValueClass(Put.class); //以第一個Job的輸出作爲第二個Job的輸入 FileInputFormat.addInputPath(convertWordCountJobOutputToHFileJob, new Path(dfsArgs[1])); FileOutputFormat.setOutputPath(convertWordCountJobOutputToHFileJob, new Path(dfsArgs[2])); //建立HBase的配置對象 Configuration hbaseConfiguration=HBaseConfiguration.create(); //建立目標表對象 HTable wordCountTable =new HTable(hbaseConfiguration, "word_count"); HFileOutputFormat.configureIncrementalLoad(convertWordCountJobOutputToHFileJob,wordCountTable); //提交第二個job int convertWordCountJobOutputToHFileJobResult=convertWordCountJobOutputToHFileJob.waitForCompletion(true)?0:1; //當第二個job結束以後,調用BulkLoad方式來將MR結果批量入庫 LoadIncrementalHFiles loader = new LoadIncrementalHFiles(hbaseConfiguration); //第一個參數爲第二個Job的輸出目錄即保存HFile的目錄,第二個參數爲目標表 loader.doBulkLoad(new Path(dfsArgs[2]), wordCountTable); //最後調用System.exit進行退出 System.exit(convertWordCountJobOutputToHFileJobResult); } }
好比原始的輸入數據的目錄爲:/rawdata/test/wordcount/20131212 app
中間結果數據保存的目錄爲:/middata/test/wordcount/20131212(1)HFile方式在全部的加載方案裏面是最快的,不過有個前提——數據是第一次導入,表是空的。若是表中已經有了數據。HFile再導入到hbase的表中會觸發split操做。 框架
(2)最終輸出結果,不管是map仍是reduce,輸出部分key和value的類型必須是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
不然報這樣的錯誤: ide
java.lang.IllegalArgumentException: Can't read partitions file ... Caused by: java.io.IOException: wrong key class: org.apache.hadoop.io.*** is not class org.apache.hadoop.hbase.io.ImmutableBytesWritable(3)最終輸出部分,Value類型是KeyValue 或Put,對應的Sorter分別是KeyValueSortReducer或PutSortReducer,這個 SorterReducer 能夠不指定,由於源碼中已經作了判斷:
if (KeyValue.class.equals(job.getMapOutputValueClass())) { job.setReducerClass(KeyValueSortReducer.class); } else if (Put.class.equals(job.getMapOutputValueClass())) { job.setReducerClass(PutSortReducer.class); } else { LOG.warn("Unknown map output value type:" + job.getMapOutputValueClass()); }(4) MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只適合一次對單列族組織成HFile文件,多列簇須要起多個 job,不過新版本的 Hbase 已經解決了這個限制。
(6)最後一個 Reduce 沒有 setNumReduceTasks 是由於,該設置由框架根據region個數自動配置的。 oop
(7)下邊配置部分,註釋掉的其實寫不寫都無所謂,由於看源碼就知道configureIncrementalLoad方法已經把固定的配置全配置完了,不固定的部分才須要手動配置。 源碼分析
public class HFileOutput { //job 配置 public static Job configureJob(Configuration conf) throws IOException { Job job = new Job(configuration, "countUnite1"); job.setJarByClass(HFileOutput.class); //job.setNumReduceTasks(2); //job.setOutputKeyClass(ImmutableBytesWritable.class); //job.setOutputValueClass(KeyValue.class); //job.setOutputFormatClass(HFileOutputFormat.class); Scan scan = new Scan(); scan.setCaching(10); scan.addFamily(INPUT_FAMILY); TableMapReduceUtil.initTableMapperJob(inputTable, scan, HFileOutputMapper.class, ImmutableBytesWritable.class, LongWritable.class, job); //這裏若是不定義reducer部分,會自動識別定義成KeyValueSortReducer.class 和PutSortReducer.class job.setReducerClass(HFileOutputRedcuer.class); //job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat.configureIncrementalLoad(job, new HTable( configuration, outputTable)); HFileOutputFormat.setOutputPath(job, new Path()); //FileOutputFormat.setOutputPath(job, new Path()); //等同上句 return job; } public static class HFileOutputMapper extends TableMapper<ImmutableBytesWritable, LongWritable> { public void map(ImmutableBytesWritable key, Result values, Context context) throws IOException, InterruptedException { //mapper邏輯部分 context.write(new ImmutableBytesWritable(Bytes()), LongWritable()); } } public static class HFileOutputRedcuer extends Reducer<ImmutableBytesWritable, LongWritable, ImmutableBytesWritable, KeyValue> { public void reduce(ImmutableBytesWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { //reducer邏輯部分 KeyValue kv = new KeyValue(row, OUTPUT_FAMILY, tmp[1].getBytes(), Bytes.toBytes(count)); context.write(key, kv); } } }
一、Hbase幾種數據入庫(load)方式比較 大數據
http://blog.csdn.net/kirayuan/article/details/6371635 spa
二、MapReduce生成HFile入庫到HBase及源碼分析
http://blog.pureisle.net/archives/1950.html
三、MapReduce生成HFile入庫到HBase