JavaShuo
欄目
標籤
plot the loss surface (BCE and MSE)for a two layers neural network
時間 2020-05-11
標籤
plot
loss
surface
bce
mse
layers
neural
network
欄目
Microsoft Surface
简体版
原文
原文鏈接
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def mlp_layer(x, w, b=0, activate="tanh"): if activate=="tanh": return np.tanh((w.transpose())*x
>>阅读原文<<
相關文章
1.
Distilling the Knowledge in a Neural Network
2.
Implementing a Neural Network from Scratch in Python – An Introduction
3.
[Tensorflow] Cookbook - Neural Network
4.
Logistic-Regression-with-a-Neural-Network-mindset
5.
NN Representational power && Setting number of layers and their sizes
6.
深度學習:Neural Network Layers Understanding
7.
(轉)A Recipe for Training Neural Networks
8.
00040-Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional
9.
A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions
10.
Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano
更多相關文章...
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
plot
layers
network
neural
loss
surface
bce
a'+'a
bce+ln
系統網絡
Microsoft Surface
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 讓chrome支持小於12px的文字
2.
集合的一點小總結
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基礎,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打開iOS真機調試操作
8.
improved open set domain adaptation with backpropagation 學習筆記
9.
Chrome插件 GitHub-Chart Commits3D直方圖視圖
10.
CISCO ASAv 9.15 - 體驗思科上一代防火牆
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Distilling the Knowledge in a Neural Network
2.
Implementing a Neural Network from Scratch in Python – An Introduction
3.
[Tensorflow] Cookbook - Neural Network
4.
Logistic-Regression-with-a-Neural-Network-mindset
5.
NN Representational power && Setting number of layers and their sizes
6.
深度學習:Neural Network Layers Understanding
7.
(轉)A Recipe for Training Neural Networks
8.
00040-Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional
9.
A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions
10.
Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano
>>更多相關文章<<