1、目的java
把hbase中某張表的數據導出到hdfs上一份。python
實現方式這裏介紹兩種:一種是本身寫mr程序來完成,一種是使用hbase提供的類來完成。apache
2、自定義mr程序將hbase數據導出到hdfs上app
2.1首先看看hbase中t1表中的數據:ide
2.2mr的代碼以下:工具
比較重要的語句是oop
job.setNumReduceTasks(0);//爲何要設置reduce的數量是0呢?讀者能夠本身考慮下
TableMapReduceUtil.initTableMapperJob(args[0], new Scan(),HBaseToHdfsMapper.class ,Text.class, Text.class, job);//這行語句指定了mr的輸入是hbase的哪張表,scan能夠對這個表進行filter操做。spa
public class HBaseToHdfs { public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); Job job = Job.getInstance(conf, HBaseToHdfs.class.getSimpleName()); job.setJarByClass(HBaseToHdfs.class); job.setMapperClass(HBaseToHdfsMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setNumReduceTasks(0); TableMapReduceUtil.initTableMapperJob(args[0], new Scan(),HBaseToHdfsMapper.class ,Text.class, Text.class, job); //TableMapReduceUtil.addDependencyJars(job); job.setOutputFormatClass(TextOutputFormat.class); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } public static class HBaseToHdfsMapper extends TableMapper<Text, Text> { private Text outKey = new Text(); private Text outValue = new Text(); @Override protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException { //key在這裏就是hbase的rowkey byte[] name = null; byte[] age = null; byte[] gender = null; byte[] birthday = null; try { name = value.getColumnLatestCell("f1".getBytes(), "name".getBytes()).getValue(); } catch (Exception e) {} try { age = value.getColumnLatestCell("f1".getBytes(), "age".getBytes()).getValue(); } catch (Exception e) {} try { gender = value.getColumnLatestCell("f1".getBytes(), "gender".getBytes()).getValue(); } catch (Exception e) {} try { birthday = value.getColumnLatestCell("f1".getBytes(), "birthday".getBytes()).getValue(); } catch (Exception e) {} outKey.set(key.get()); String temp = ((name==null || name.length==0)?"NULL":new String(name)) + "\t" + ((age==null || age.length==0)?"NULL":new String(age)) + "\t" + ((gender==null||gender.length==0)?"NULL":new String(gender)) + "\t" + ((birthday==null||birthday.length==0)?"NULL":new String(birthday)); System.out.println(temp); outValue.set(temp); context.write(outKey, outValue); } } }
2.3打包執行code
hadoop jar hbaseToDfs.jar com.lanyun.hadoop2.HBaseToHdfs t1 /t1orm
2.4查看hdfs上的文件
(my_python_env)[root@hadoop26 ~]# hadoop fs -cat /t1/part* 1 zhangsan 10 male NULL 2 lisi NULL NULL NULL 3 wangwu NULL NULL NULL 4 zhaoliu NULL NULL 1993
至此,導出成功
3、使用hbase自帶的工具進行導出
hbase自帶的工具是:org.apache.hadoop.hbase.mapreduce.Export
3.1如何使用這個工具呢?查看幫助信息
(my_python_env)[root@hadoop26 ~]# hbase org.apache.hadoop.hbase.mapreduce.Export ERROR: Wrong number of arguments: 0 Usage: Export [-D <property=value>]* <tablename> <outputdir> [<versions> [<starttime> [<endtime>]] [^[regex pattern] or [Prefix] to filter]]
3.2使用工具來導出
hbase org.apache.hadoop.hbase.mapreduce.Export t1 /t2
至此已經完成導出。