我是如何入門、成長並進階爲數據分析師的?

前幾天和一朋友A聊天,一個在我看來徹底能夠在大部分行業領域公司獨當一面的數據分析師,目前仍謙虛的以「數據猿」自稱。從事數據分析的他,半路出家,起初雖然懂一些數據庫的知識,但仍然和不少人同樣,艱難地上了路。因而咱們就索性一塊兒討討經,「一本正經」地聊起工做來,留下點感悟。數據庫

數據分析如何起步?

說入門很簡單必定是騙你的,A說本身是從記數據開始的,記數據一方面是爲了應付領導的提問,另外一方面也是在培養數據的敏感度。確實,分析的源頭通常是某些指標有了明顯的變更,熟悉天天的交易數據或用戶數據能讓你一眼就看出問題在哪裏,哪些數據有關聯,而後再作分析。而我是從Excel作起的,大部分時間都是在取數,作「表哥」,還要抵擋來自業務的需求***。後來,他去作了數據挖掘,我從BI再從數據平臺轉作了技術。安全

萬事開頭難,但一旦數據分析有了動力,就要開始完善本身的知識體系,這也是真正入門的開端。那如何完善數據分析的知識體系?網絡

一、基本的計算機知識和統計知識框架

數據庫+SQL語言ide

一些經常使用的數據庫如Oracle、SQL Sever、DB二、MySQL,這些數據庫或者說平常接觸的數據庫都要有所瞭解,懂最經常使用的就好,最重要的仍是要會寫SQL。函數

數學/統計學知識工具

一些基本的數學統計方法如描述性統計、多元統計分析、迴歸分析等,重要性不言而喻。學習

數據挖掘知識:方差分析、迴歸分析、因子分析、聚類分析等等。這些東西做爲入門多多少少都要會一些,雖然有可能不會全用到,但一旦用時方恨少。測試

數據分析可視工具大數據

數據分析可視化工具很寬泛。首推Excel,中小公司很依賴,熟練使用數據透視表,這是必備技能。中大型公司都是用報表工具或者BI來作報表,但有了SQL+Excel的基礎,這些工具上手都很快。

二、業務知識

數據分析師要與公司的各業務打交道,因此對於各部門的業務知識要有深刻的瞭解。某業務領導須要知道某個指標,你須要知道這個指標由哪些數據構成?數據統計的口徑是什麼?數據怎麼取出來?這個指標對於行業的意義是什麼,處於什麼範圍分別對應什麼樣的狀況,是好仍是壞。而後慢慢摸索這個指標層面多維度的規律,如何設定最合理。

明確本身的位置,快速成長

附上網上的一張數據分析師能力體系圖,用於參考。

我是如何入門、成長並進階爲數據分析師的?

數據分析是一貫比較專業的工做,要時刻警戒本身能力是否有提高,目前是什麼樣的水平,習慣反思本身:

這裏引用知乎上@任明遠的回答

一、你瞭解你所整理的數據的來源嗎?是本身公司的業務數據,仍是與合做夥伴交換的數據?是本身公司相關部門採集的,仍是從第三方獲取的?獲取過程當中,具體的指標和邏輯是什麼?

二、這些數據是真實的嗎?採集和整理過程當中會不會出現什麼問題?技術上的邏輯和業務上的邏輯是不一樣的概念,有沒有技術上沒有瑕疵,但並不符合業務邏輯的數據流程?

三、到你手裏的數據通過了什麼處理?你又作了什麼處理?爲何他們和你要作這些處理?

四、誰須要你的數據?你處理後的數據流向哪裏?他們用數據作什麼?這些數據最終又拿去作了什麼?好比,爲客戶作了什麼服務,公司發佈了什麼內容,或向管理層證實了什麼KPI,或支持了哪一個部門的評估?

五、你作整理的週期是什麼?爲何是這樣的週期?

六、公司有其餘的部門在處理其餘的數據嗎?是什麼樣的數據?和你有什麼關係?爲何這些數據要分開處理?

七、近一年,你本身的電腦上應該已經積累了很多數據,試試作個分析,從一段較長的時間來看,你負責的這一塊數據發生了什麼變化?爲何會有這個變化?和公司的產品、經營、業務有關,仍是和行業有關?具體怎麼有關?

如何進一步提高?

業務上

1.業務爲核心,數據爲王

  • 瞭解整個產業鏈的結構

  • 制定好業務的發展規劃

  • 瞭解衡量的核心指標

  • 有了數據必須和業務結合纔有效果

須要懂業務的總體概況,摸清楚所在產業鏈的整個結構,對行業的上游和下游的經營狀況有大體的瞭解。而後根據業務當前的須要,指定發展計劃,從而歸類出須要整理的數據。最後一步詳細的列出數據核心指標(KPI),而且對幾個核心指標進行更細緻的拆解,固然具體結合你的業務屬性來處理,找出那些對指標影響幅度較大的影響因子。前期資料的收集以及業務現況的全面掌握很是關鍵。

2.思考指標現狀,發現多維規律

  • 熟悉產品框架,全面定義每一個指標的運營現狀對

  • 比同行業指標,挖掘隱藏的提高空間

  • 拆解關鍵指標,合理設置運營方法來觀察效果

  • 爭對核心用戶,單獨進行產品用研與需求挖掘

業務的分析大可能是定性的,須要培養一種客觀的感受意識。定性的分析則須要藉助技術、工具、機器。而感受的培養,因爲每一個人的思惟、感知都不一樣,只能把控大致的方向,不少數據元素之間的關係仍是須要經過數據可視化技術來實現。

3.規律驗證,經驗總結

發現了規律以後不能馬上上線,須要在測試機上對模型進行驗證。

技能上

1.Excel是否精鑽?

除了經常使用的Excel函數(sum、average、if、countifs、sumifs、offset、match、index等)以外,Excel圖表(餅圖、線圖、柱形圖、雷達圖等)和簡單分析技能也是常常用的,能夠幫助你快速分析業務走勢和異常狀況;另外,Excel裏面的函數結合透視表以及VBA功能是完善報表開發的利器,讓你一鍵輕鬆搞定報表。

我是如何入門、成長並進階爲數據分析師的?

2.你須要更懂數據庫

經常使用的數據庫如MySQL,Sql Server、Oracle、DB二、MongoDB等;除去SQL語句的熟練使用,對於數據庫的存儲讀取過程也要熟練掌握。在對於大數據量處理時,如何想辦法加快程序的運行速度、減小網絡流量、提升數據庫的安全性是很是有必要的。

3.掌握數據整理、可視化和報表製做

數據整理,是將原始數據轉換成方便實用的格式,Excel在協同工做上並非一個好工具,報表FineReport比較推薦。項目部署的Tableau、FineBI、Qlikview一類BI工具,有沒有好好培訓學習,這些便捷的工具都能淡化數據分析時一些重複性操做,把精力更多留於分析。

我是如何入門、成長並進階爲數據分析師的?

相關文章
相關標籤/搜索