HashMap
在 Java
和 Android
開發中很是常見HashMap
的所有源碼分析,但願大家會喜歡。
- 本文基於版本
JDK 1.7
,即Java 7
- 關於版本
JDK 1.8
,即Java 8
,具體請看文章Java源碼分析:關於 HashMap 1.8 的重大更新
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
複製代碼
HashMap
的實如今 JDK 1.7
和 JDK 1.8
差異較大JDK 1.7
中 HashMap
的源碼解析關於
JDK 1.8
中HashMap
的源碼解析請看文章:Java源碼分析:關於 HashMap 1.8 的重大更新java
HashMap
採用的數據結構 = 數組(主) + 單鏈表(副),具體描述以下數組
該數據結構方式也稱:拉鍊法安全
注:爲了讓你們有個感性的認識,只是簡單的畫出存儲流程,更加詳細 & 具體的存儲流程會在下面源碼分析中給出bash
HashMap
中的數組元素 & 鏈表節點 採用 Entry
類 實現,以下圖所示
- 即
HashMap
的本質 = 1個存儲Entry
類對象的數組 + 多個單鏈表Entry
對象本質 = 1個映射(鍵 - 值對),屬性包括:鍵(key
)、值(value
) & 下1節點(next
) = 單鏈表的指針 = 也是一個Entry
對象,用於解決hash
衝突
具體分析請看註釋微信
/**
* Entry類實現了Map.Entry接口
* 即 實現了getKey()、getValue()、equals(Object o)和hashCode()等方法
**/
static class Entry<K,V> implements Map.Entry<K,V> {
final K key; // 鍵
V value; // 值
Entry<K,V> next; // 指向下一個節點 ,也是一個Entry對象,從而造成解決hash衝突的單鏈表
int hash; // hash值
/**
* 構造方法,建立一個Entry
* 參數:哈希值h,鍵值k,值v、下一個節點n
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
// 返回 與 此項 對應的鍵
public final K getKey() {
return key;
}
// 返回 與 此項 對應的值
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
/**
* equals()
* 做用:判斷2個Entry是否相等,必須key和value都相等,才返回true
*/
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
/**
* hashCode()
*/
public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}
public final String toString() {
return getKey() + "=" + getValue();
}
/**
* 當向HashMap中添加元素時,即調用put(k,v)時,
* 對已經在HashMap中k位置進行v的覆蓋時,會調用此方法
* 此處沒作任何處理
*/
void recordAccess(HashMap<K,V> m) {
}
/**
* 當從HashMap中刪除了一個Entry時,會調用該函數
* 此處沒作任何處理
*/
void recordRemoval(HashMap<K,V> m) {
}
}
複製代碼
V get(Object key); // 得到指定鍵的值
V put(K key, V value); // 添加鍵值對
void putAll(Map<? extends K, ? extends V> m); // 將指定Map中的鍵值對 複製到 此Map中
V remove(Object key); // 刪除該鍵值對
boolean containsKey(Object key); // 判斷是否存在該鍵的鍵值對;是 則返回true
boolean containsValue(Object value); // 判斷是否存在該值的鍵值對;是 則返回true
Set<K> keySet(); // 單獨抽取key序列,將全部key生成一個Set
Collection<V> values(); // 單獨value序列,將全部value生成一個Collection
void clear(); // 清除哈希表中的全部鍵值對
int size(); // 返回哈希表中全部 鍵值對的數量 = 數組中的鍵值對 + 鏈表中的鍵值對
boolean isEmpty(); // 判斷HashMap是否爲空;size == 0時 表示爲 空
複製代碼
HashMap
的對象HashMap
添加數據(成對 放入 鍵 - 值對)HashMap
的某個數據HashMap
的所有數據:遍歷HashMap
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class HashMapTest {
public static void main(String[] args) {
/**
* 1. 聲明1個 HashMap的對象
*/
Map<String, Integer> map = new HashMap<String, Integer>();
/**
* 2. 向HashMap添加數據(成對 放入 鍵 - 值對)
*/
map.put("Android", 1);
map.put("Java", 2);
map.put("iOS", 3);
map.put("數據挖掘", 4);
map.put("產品經理", 5);
/**
* 3. 獲取 HashMap 的某個數據
*/
System.out.println("key = 產品經理時的值爲:" + map.get("產品經理"));
/**
* 4. 獲取 HashMap 的所有數據:遍歷HashMap
* 核心思想:
* 步驟1:得到key-value對(Entry) 或 key 或 value的Set集合
* 步驟2:遍歷上述Set集合(使用for循環 、 迭代器(Iterator)都可)
* 方法共有3種:分別針對 key-value對(Entry) 或 key 或 value
*/
// 方法1:得到key-value的Set集合 再遍歷
System.out.println("方法1");
// 1. 得到key-value對(Entry)的Set集合
Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
// 2. 遍歷Set集合,從而獲取key-value
// 2.1 經過for循環
for(Map.Entry<String, Integer> entry : entrySet){
System.out.print(entry.getKey());
System.out.println(entry.getValue());
}
System.out.println("----------");
// 2.2 經過迭代器:先得到key-value對(Entry)的Iterator,再循環遍歷
Iterator iter1 = entrySet.iterator();
while (iter1.hasNext()) {
// 遍歷時,需先獲取entry,再分別獲取key、value
Map.Entry entry = (Map.Entry) iter1.next();
System.out.print((String) entry.getKey());
System.out.println((Integer) entry.getValue());
}
// 方法2:得到key的Set集合 再遍歷
System.out.println("方法2");
// 1. 得到key的Set集合
Set<String> keySet = map.keySet();
// 2. 遍歷Set集合,從而獲取key,再獲取value
// 2.1 經過for循環
for(String key : keySet){
System.out.print(key);
System.out.println(map.get(key));
}
System.out.println("----------");
// 2.2 經過迭代器:先得到key的Iterator,再循環遍歷
Iterator iter2 = keySet.iterator();
String key = null;
while (iter2.hasNext()) {
key = (String)iter2.next();
System.out.print(key);
System.out.println(map.get(key));
}
// 方法3:得到value的Set集合 再遍歷
System.out.println("方法3");
// 1. 得到value的Set集合
Collection valueSet = map.values();
// 2. 遍歷Set集合,從而獲取value
// 2.1 得到values 的Iterator
Iterator iter3 = valueSet.iterator();
// 2.2 經過遍歷,直接獲取value
while (iter3.hasNext()) {
System.out.println(iter3.next());
}
}
}
// 注:對於遍歷方式,推薦使用針對 key-value對(Entry)的方式:效率高
// 緣由:
// 1. 對於 遍歷keySet 、valueSet,實質上 = 遍歷了2次:1 = 轉爲 iterator 迭代器遍歷、2 = 從 HashMap 中取出 key 的 value 操做(經過 key 值 hashCode 和 equals 索引)
// 2. 對於 遍歷 entrySet ,實質 = 遍歷了1次 = 獲取存儲實體Entry(存儲了key 和 value )
複製代碼
方法1
Java2
iOS3
數據挖掘4
Android1
產品經理5
----------
Java2
iOS3
數據挖掘4
Android1
產品經理5
方法2
Java2
iOS3
數據挖掘4
Android1
產品經理5
----------
Java2
iOS3
數據挖掘4
Android1
產品經理5
方法3
2
3
4
1
5
複製代碼
下面,咱們按照上述的使用過程,對一個個步驟進行源碼解析數據結構
HashMap
中的重要參數(變量)HashMap
中的主要參數 = 容量、加載因子、擴容閾值// 1. 容量(capacity): HashMap中數組的長度
// a. 容量範圍:必須是2的冪 & <最大容量(2的30次方)
// b. 初始容量 = 哈希表建立時的容量
// 默認容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十進制的2^4=16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量 = 2的30次方(若傳入的容量過大,將被最大值替換)
static final int MAXIMUM_CAPACITY = 1 << 30;
// 2. 加載因子(Load factor):HashMap在其容量自動增長前可達到多滿的一種尺度
// a. 加載因子越大、填滿的元素越多 = 空間利用率高、但衝突的機會加大、查找效率變低(由於鏈表變長了)
// b. 加載因子越小、填滿的元素越少 = 空間利用率小、衝突的機會減少、查找效率高(鏈表不長)
// 實際加載因子
final float loadFactor;
// 默認加載因子 = 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 3. 擴容閾值(threshold):當哈希表的大小 ≥ 擴容閾值時,就會擴容哈希表(即擴充HashMap的容量)
// a. 擴容 = 對哈希表進行resize操做(即重建內部數據結構),從而哈希表將具備大約兩倍的桶數
// b. 擴容閾值 = 容量 x 加載因子
int threshold;
// 4. 其餘
// 存儲數據的Entry類型 數組,長度 = 2的冪
// HashMap的實現方式 = 拉鍊法,Entry數組上的每一個元素本質上是一個單向鏈表
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
// HashMap的大小,即 HashMap中存儲的鍵值對的數量
transient int size;
複製代碼
/**
* 函數使用原型
*/
Map<String,Integer> map = new HashMap<String,Integer>();
/**
* 源碼分析:主要是HashMap的構造函數 = 4個
* 僅貼出關於HashMap構造函數的源碼
*/
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable{
// 省略上節闡述的參數
/**
* 構造函數1:默認構造函數(無參)
* 加載因子 & 容量 = 默認 = 0.7五、16
*/
public HashMap() {
// 其實是調用構造函數3:指定「容量大小」和「加載因子」的構造函數
// 傳入的指定容量 & 加載因子 = 默認
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* 構造函數2:指定「容量大小」的構造函數
* 加載因子 = 默認 = 0.75 、容量 = 指定大小
*/
public HashMap(int initialCapacity) {
// 其實是調用指定「容量大小」和「加載因子」的構造函數
// 只是在傳入的加載因子參數 = 默認加載因子
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 構造函數3:指定「容量大小」和「加載因子」的構造函數
* 加載因子 & 容量 = 本身指定
*/
public HashMap(int initialCapacity, float loadFactor) {
// HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕傳入的 > 最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 設置 加載因子
this.loadFactor = loadFactor;
// 設置 擴容閾值 = 初始容量
// 注:此處不是真正的閾值,是爲了擴展table,該閾值後面會從新計算,下面會詳細講解
threshold = initialCapacity;
init(); // 一個空方法用於將來的子對象擴展
}
/**
* 構造函數4:包含「子Map」的構造函數
* 即 構造出來的HashMap包含傳入Map的映射關係
* 加載因子 & 容量 = 默認
*/
public HashMap(Map<? extends K, ? extends V> m) {
// 設置容量大小 & 加載因子 = 默認
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 該方法用於初始化 數組 & 閾值,下面會詳細說明
inflateTable(threshold);
// 將傳入的子Map中的所有元素逐個添加到HashMap中
putAllForCreate(m);
}
}
複製代碼
capacity
)、加載因子(Load factor
),但仍無真正初始化哈希表,即初始化存儲數組table
table
)是在第1次添加鍵值對時,即第1次調用put()
時。下面會詳細說明至此,關於HashMap
的構造函數講解完畢。多線程
注:爲了讓你們有個感性的認識,只是簡單的畫出存儲流程,更加詳細 & 具體的存儲流程會在下面源碼分析中給出併發
/**
* 函數使用原型
*/
map.put("Android", 1);
map.put("Java", 2);
map.put("iOS", 3);
map.put("數據挖掘", 4);
map.put("產品經理", 5);
/**
* 源碼分析:主要分析: HashMap的put函數
*/
public V put(K key, V value)
(分析1)// 1. 若 哈希表未初始化(即 table爲空)
// 則使用 構造函數時設置的閾值(即初始容量) 初始化 數組table
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 2. 判斷key是否爲空值null
(分析2)// 2.1 若key == null,則將該鍵-值 存放到數組table 中的第1個位置,即table [0]
// (本質:key = Null時,hash值 = 0,故存放到table[0]中)
// 該位置永遠只有1個value,新傳進來的value會覆蓋舊的value
if (key == null)
return putForNullKey(value);
(分析3) // 2.2 若 key ≠ null,則計算存放數組 table 中的位置(下標、索引)
// a. 根據鍵值key計算hash值
int hash = hash(key);
// b. 根據hash值 最終得到 key對應存放的數組Table中位置
int i = indexFor(hash, table.length);
// 3. 判斷該key對應的值是否已存在(經過遍歷 以該數組元素爲頭結點的鏈表 逐個判斷)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
(分析4)// 3.1 若該key已存在(即 key-value已存在 ),則用 新value 替換 舊value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //並返回舊的value
}
}
modCount++;
(分析5)// 3.2 若 該key不存在,則將「key-value」添加到table中
addEntry(hash, key, value, i);
return null;
}
複製代碼
即 初始化數組(table
)、擴容閾值(threshold
)函數
/**
* 函數使用原型
*/
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
/**
* 源碼分析:inflateTable(threshold);
*/
private void inflateTable(int toSize) {
// 1. 將傳入的容量大小轉化爲:>傳入容量大小的最小的2的次冪
// 即若是傳入的是容量大小是19,那麼轉化後,初始化容量大小爲32(即2的5次冪)
int capacity = roundUpToPowerOf2(toSize);->>分析1
// 2. 從新計算閾值 threshold = 容量 * 加載因子
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
// 3. 使用計算後的初始容量(已是2的次冪) 初始化數組table(做爲數組長度)
// 即 哈希表的容量大小 = 數組大小(長度)
table = new Entry[capacity]; //用該容量初始化table
initHashSeedAsNeeded(capacity);
}
/**
* 分析1:roundUpToPowerOf2(toSize)
* 做用:將傳入的容量大小轉化爲:>傳入容量大小的最小的2的冪
* 特別注意:容量大小必須爲2的冪,該緣由在下面的講解會詳細分析
*/
private static int roundUpToPowerOf2(int number) {
//若 容量超過了最大值,初始化容量設置爲最大值 ;不然,設置爲:>傳入容量大小的最小的2的次冪
return number >= MAXIMUM_CAPACITY ?
MAXIMUM_CAPACITY : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
複製代碼
table
)是在第1次添加鍵值對時,即第1次調用put()
時/**
* 函數使用原型
*/
if (key == null)
return putForNullKey(value);
/**
* 源碼分析:putForNullKey(value)
*/
private V putForNullKey(V value) {
// 遍歷以table[0]爲首的鏈表,尋找是否存在key==null 對應的鍵值對
// 1. 如有:則用新value 替換 舊value;同時返回舊的value值
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 2 .若無key==null的鍵,那麼調用addEntry(),將空鍵 & 對應的值封裝到Entry中,並放到table[0]中
addEntry(0, null, value, 0);
// 注:
// a. addEntry()的第1個參數 = hash值 = 傳入0
// b. 即 說明:當key = null時,也有hash值 = 0,因此HashMap的key 可爲null
// c. 對比HashTable,因爲HashTable對key直接hashCode(),若key爲null時,會拋出異常,因此HashTable的key不可爲null
// d. 此處只需知道是將 key-value 添加到HashMap中便可,關於addEntry()的源碼分析將等到下面再詳細說明,
return null;
}
複製代碼
今後處能夠看出:oop
HashMap
的鍵key
可爲null
(區別於 HashTable
的key
不可爲null
)HashMap
的鍵key
可爲null
且只能爲1個,但值value
可爲null且爲多個/**
* 函數使用原型
* 主要分爲2步:計算hash值、根據hash值再計算得出最後數組位置
*/
// a. 根據鍵值key計算hash值 ->> 分析1
int hash = hash(key);
// b. 根據hash值 最終得到 key對應存放的數組Table中位置 ->> 分析2
int i = indexFor(hash, table.length);
/**
* 源碼分析1:hash(key)
* 該函數在JDK 1.7 和 1.8 中的實現不一樣,但原理同樣 = 擾動函數 = 使得根據key生成的哈希碼(hash值)分佈更加均勻、更具有隨機性,避免出現hash值衝突(即指不一樣key但生成同1個hash值)
* JDK 1.7 作了9次擾動處理 = 4次位運算 + 5次異或運算
* JDK 1.8 簡化了擾動函數 = 只作了2次擾動 = 1次位運算 + 1次異或運算
*/
// JDK 1.7實現:將 鍵key 轉換成 哈希碼(hash值)操做 = 使用hashCode() + 4次位運算 + 5次異或運算(9次擾動)
static final int hash(int h) {
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// JDK 1.8實現:將 鍵key 轉換成 哈希碼(hash值)操做 = 使用hashCode() + 1次位運算 + 1次異或運算(2次擾動)
// 1. 取hashCode值: h = key.hashCode()
// 2. 高位參與低位的運算:h ^ (h >>> 16)
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
// a. 當key = null時,hash值 = 0,因此HashMap的key 可爲null
// 注:對比HashTable,HashTable對key直接hashCode(),若key爲null時,會拋出異常,因此HashTable的key不可爲null
// b. 當key ≠ null時,則經過先計算出 key的 hashCode()(記爲h),而後 對哈希碼進行 擾動處理: 按位 異或(^) 哈希碼自身右移16位後的二進制
}
/**
* 函數源碼分析2:indexFor(hash, table.length)
* JDK 1.8中實際上無該函數,但原理相同,即具有相似做用的函數
*/
static int indexFor(int h, int length) {
return h & (length-1);
// 將對哈希碼擾動處理後的結果 與運算(&) (數組長度-1),最終獲得存儲在數組table的位置(即數組下標、索引)
}
複製代碼
在瞭解 如何計算存放數組table
中的位置 後,所謂 知其然 而 需知其因此然,下面我將講解爲何要這樣計算,即主要解答如下3個問題:
hashCode()
處理的哈希碼 做爲 存儲數組table
的下標位置?在回答這3個問題前,請你們記住一個核心思想:
全部處理的根本目的,都是爲了提升 存儲
key-value
的數組下標位置 的隨機性 & 分佈均勻性,儘可能避免出現hash值衝突。即:對於不一樣key
,存儲的數組下標位置要儘量不同
HashMap
給出瞭解決方案:哈希碼 與運算(&) (數組長度-1);請繼續問題2結論:根據HashMap的容量大小(數組長度),按需取 哈希碼必定數量的低位 做爲存儲的數組下標位置,從而 解決 「哈希碼與數組大小範圍不匹配」 的問題
具體解決方案描述
結論:加大哈希碼低位的隨機性,使得分佈更均勻,從而提升對應數組存儲下標位置的隨機性 & 均勻性,最終減小Hash衝突
具體描述
至此,關於怎麼計算 key-value
值存儲在HashMap
數組位置 & 爲何要這麼計算,講解完畢。
注:當發生
Hash
衝突時,爲了保證 鍵key
的惟一性哈希表並不會立刻在鏈表中插入新數據,而是先查找該key
是否已存在,若已存在,則替換便可
/**
* 函數使用原型
*/
// 2. 判斷該key對應的值是否已存在(經過遍歷 以該數組元素爲頭結點的鏈表 逐個判斷)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 2.1 若該key已存在(即 key-value已存在 ),則用 新value 替換 舊value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //並返回舊的value
}
}
modCount++;
// 2.2 若 該key不存在,則將「key-value」添加到table中
addEntry(hash, key, value, i);
return null;
複製代碼
key
是否存在(即key
值的對比)具體以下圖:
key
值的比較採用 equals()
或 "==" 進行比較,下面給出其介紹 & 與 「==」
使用的對比
/**
* 函數使用原型
*/
// 2. 判斷該key對應的值是否已存在
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 2.1 若該key對應的值已存在,則用新的value取代舊的value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 2.2 若 該key對應的值不存在,則將「key-value」添加到table中
addEntry(hash, key, value, i);
/**
* 源碼分析:addEntry(hash, key, value, i)
* 做用:添加鍵值對(Entry )到 HashMap中
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
// 參數3 = 插入數組table的索引位置 = 數組下標
// 1. 插入前,先判斷容量是否足夠
// 1.1 若不足夠,則進行擴容(2倍)、從新計算Hash值、從新計算存儲數組下標
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length); // a. 擴容2倍 --> 分析1
hash = (null != key) ? hash(key) : 0; // b. 從新計算該Key對應的hash值
bucketIndex = indexFor(hash, table.length); // c. 從新計算該Key對應的hash值的存儲數組下標位置
}
// 1.2 若容量足夠,則建立1個新的數組元素(Entry) 並放入到數組中--> 分析2
createEntry(hash, key, value, bucketIndex);
}
/**
* 分析1:resize(2 * table.length)
* 做用:當容量不足時(容量 > 閾值),則擴容(擴到2倍)
*/
void resize(int newCapacity) {
// 1. 保存舊數組(old table)
Entry[] oldTable = table;
// 2. 保存舊容量(old capacity ),即數組長度
int oldCapacity = oldTable.length;
// 3. 若舊容量已是系統默認最大容量了,那麼將閾值設置成整型的最大值,退出
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 4. 根據新容量(2倍容量)新建1個數組,即新table
Entry[] newTable = new Entry[newCapacity];
// 5. 將舊數組上的數據(鍵值對)轉移到新table中,從而完成擴容 ->>分析1.1
transfer(newTable);
// 6. 新數組table引用到HashMap的table屬性上
table = newTable;
// 7. 從新設置閾值
threshold = (int)(newCapacity * loadFactor);
}
/**
* 分析1.1:transfer(newTable);
* 做用:將舊數組上的數據(鍵值對)轉移到新table中,從而完成擴容
* 過程:按舊鏈表的正序遍歷鏈表、在新鏈表的頭部依次插入
*/
void transfer(Entry[] newTable) {
// 1. src引用了舊數組
Entry[] src = table;
// 2. 獲取新數組的大小 = 獲取新容量大小
int newCapacity = newTable.length;
// 3. 經過遍歷 舊數組,將舊數組上的數據(鍵值對)轉移到新數組中
for (int j = 0; j < src.length; j++) {
// 3.1 取得舊數組的每一個元素
Entry<K,V> e = src[j];
if (e != null) {
// 3.2 釋放舊數組的對象引用(for循環後,舊數組再也不引用任何對象)
src[j] = null;
do {
// 3.3 遍歷 以該數組元素爲首 的鏈表
// 注:轉移鏈表時,因是單鏈表,故要保存下1個結點,不然轉移後鏈表會斷開
Entry<K,V> next = e.next;
// 3.4 從新計算每一個元素的存儲位置
int i = indexFor(e.hash, newCapacity);
// 3.5 將元素放在數組上:採用單鏈表的頭插入方式 = 在鏈表頭上存放數據 = 將數組位置的原有數據放在後1個指針、將需放入的數據放到數組位置中
// 即 擴容後,可能出現逆序:按舊鏈表的正序遍歷鏈表、在新鏈表的頭部依次插入
e.next = newTable[i];
newTable[i] = e;
// 3.6 訪問下1個Entry鏈上的元素,如此不斷循環,直到遍歷完該鏈表上的全部節點
e = next;
} while (e != null);
// 如此不斷循環,直到遍歷完數組上的全部數據元素
}
}
}
/**
* 分析2:createEntry(hash, key, value, bucketIndex);
* 做用: 若容量足夠,則建立1個新的數組元素(Entry) 並放入到數組中
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
// 1. 把table中該位置原來的Entry保存
Entry<K,V> e = table[bucketIndex];
// 2. 在table中該位置新建一個Entry:將原頭結點位置(數組上)的鍵值對 放入到(鏈表)後1個節點中、將需插入的鍵值對 放入到頭結點中(數組上)-> 從而造成鏈表
// 即 在插入元素時,是在鏈表頭插入的,table中的每一個位置永遠只保存最新插入的Entry,舊的Entry則放入到鏈表中(即 解決Hash衝突)
table[bucketIndex] = new Entry<>(hash, key, value, e);
// 3. 哈希表的鍵值對數量計數增長
size++;
}
複製代碼
此處有2點需特別注意:鍵值對的添加方式 & 擴容機制
在擴容resize()
過程當中,在將舊數組上的數據 轉移到 新數組上時,轉移操做 = 按舊鏈表的正序遍歷鏈表、在新鏈表的頭部依次插入,即在轉移數據、擴容後,容易出現鏈表逆序的狀況
設從新計算存儲位置後不變,即擴容前 = 1->2->3,擴容後 = 3->2->1
下面最後1節會對上述狀況詳細說明
HashMap
添加數據(成對 放入 鍵 - 值對)的全流程至此,關於 「向 HashMap
添加數據(成對 放入 鍵 - 值對)「講解完畢
put()
函數的原理,那麼get()
函數很是好理解,由於兩者的過程原理幾乎相同get()
函數的流程以下:/**
* 函數原型
* 做用:根據鍵key,向HashMap獲取對應的值
*/
map.get(key);
/**
* 源碼分析
*/
public V get(Object key) {
// 1. 當key == null時,則到 以哈希表數組中的第1個元素(即table[0])爲頭結點的鏈表去尋找對應 key == null的鍵
if (key == null)
return getForNullKey(); --> 分析1
// 2. 當key ≠ null時,去得到對應值 -->分析2
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
/**
* 分析1:getForNullKey()
* 做用:當key == null時,則到 以哈希表數組中的第1個元素(即table[0])爲頭結點的鏈表去尋找對應 key == null的鍵
*/
private V getForNullKey() {
if (size == 0) {
return null;
}
// 遍歷以table[0]爲頭結點的鏈表,尋找 key==null 對應的值
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
// 從table[0]中取key==null的value值
if (e.key == null)
return e.value;
}
return null;
}
/**
* 分析2:getEntry(key)
* 做用:當key ≠ null時,去得到對應值
*/
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
// 1. 根據key值,經過hash()計算出對應的hash值
int hash = (key == null) ? 0 : hash(key);
// 2. 根據hash值計算出對應的數組下標
// 3. 遍歷 以該數組下標的數組元素爲頭結點的鏈表全部節點,尋找該key對應的值
for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
Object k;
// 若 hash值 & key 相等,則證實該Entry = 咱們要的鍵值對
// 經過equals()判斷key是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
複製代碼
至此,關於 「向 HashMap
獲取數據 「講解完畢
即 對其他使用
API
(函數、方法)的源碼分析
HashMap
除了核心的put()
、get()
函數,還有如下主要使用的函數方法void clear(); // 清除哈希表中的全部鍵值對
int size(); // 返回哈希表中全部 鍵值對的數量 = 數組中的鍵值對 + 鏈表中的鍵值對
boolean isEmpty(); // 判斷HashMap是否爲空;size == 0時 表示爲 空
void putAll(Map<? extends K, ? extends V> m); // 將指定Map中的鍵值對 複製到 此Map中
V remove(Object key); // 刪除該鍵值對
boolean containsKey(Object key); // 判斷是否存在該鍵的鍵值對;是 則返回true
boolean containsValue(Object value); // 判斷是否存在該值的鍵值對;是 則返回true
複製代碼
/**
* 函數:isEmpty()
* 做用:判斷HashMap是否爲空,即無鍵值對;size == 0時 表示爲 空
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 函數:size()
* 做用:返回哈希表中全部 鍵值對的數量 = 數組中的鍵值對 + 鏈表中的鍵值對
*/
public int size() {
return size;
}
/**
* 函數:clear()
* 做用:清空哈希表,即刪除全部鍵值對
* 原理:將數組table中存儲的Entry所有置爲null、size置爲0
*/
public void clear() {
modCount++;
Arrays.fill(table, null);
size = 0;
}
/**
* 函數:putAll(Map<? extends K, ? extends V> m)
* 做用:將指定Map中的鍵值對 複製到 此Map中
* 原理:相似Put函數
*/
public void putAll(Map<? extends K, ? extends V> m) {
// 1. 統計需複製多少個鍵值對
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;
// 2. 若table還沒初始化,先用剛剛統計的複製數去初始化table
if (table == EMPTY_TABLE) {
inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
}
// 3. 若需複製的數目 > 閾值,則需先擴容
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}
// 4. 開始複製(實際上不斷調用Put函數插入)
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}
/**
* 函數:remove(Object key)
* 做用:刪除該鍵值對
*/
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
// 1. 計算hash值
int hash = (key == null) ? 0 : hash(key);
// 2. 計算存儲的數組下標位置
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;
while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
// 若刪除的是table數組中的元素(即鏈表的頭結點)
// 則刪除操做 = 將頭結點的next引用存入table[i]中
if (prev == e)
table[i] = next;
//不然 將以table[i]爲頭結點的鏈表中,當前Entry的前1個Entry中的next 設置爲 當前Entry的next(即刪除當前Entry = 直接跳過當前Entry)
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}
return e;
}
/**
* 函數:containsKey(Object key)
* 做用:判斷是否存在該鍵的鍵值對;是 則返回true
* 原理:調用get(),判斷是否爲Null
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
/**
* 函數:containsValue(Object value)
* 做用:判斷是否存在該值的鍵值對;是 則返回true
*/
public boolean containsValue(Object value) {
// 若value爲空,則調用containsNullValue()
if (value == null)
return containsNullValue();
// 若value不爲空,則遍歷鏈表中的每一個Entry,經過equals()比較values 判斷是否存在
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;//返回true
return false;
}
// value爲空時調用的方法
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}
複製代碼
至此,關於HashMap
的底層原理 & 主要使用API
(函數、方法)講解完畢。
下面,用3個圖總結整個源碼內容:
總結內容 = 數據結構、主要參數、添加 & 查詢數據流程、擴容機制
數據結構 & 主要參數
添加 & 查詢數據流程
擴容機制
JDK 1.8
的區別HashMap
的實如今 JDK 1.7
和 JDK 1.8
差異較大,具體區別以下
JDK 1.8
的優化目的主要是:減小Hash
衝突 & 提升哈希表的存、取效率;關於JDK 1.8
中HashMap
的源碼解析請看文章:Java源碼分析:關於 HashMap 1.8 的重大更新
下面主要講解 HashMap
線程不安全的其中一個重要緣由:多線程下容易出現resize()
死循環 本質 = 併發 執行 put()
操做致使觸發 擴容行爲,從而致使 環形鏈表,使得在獲取數據遍歷鏈表時造成死循環,即Infinite Loop
先看擴容的源碼分析resize()
關於resize()的源碼分析已在上文詳細分析,此處僅做重點分析:transfer()
/**
* 源碼分析:resize(2 * table.length)
* 做用:當容量不足時(容量 > 閾值),則擴容(擴到2倍)
*/
void resize(int newCapacity) {
// 1. 保存舊數組(old table)
Entry[] oldTable = table;
// 2. 保存舊容量(old capacity ),即數組長度
int oldCapacity = oldTable.length;
// 3. 若舊容量已是系統默認最大容量了,那麼將閾值設置成整型的最大值,退出
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 4. 根據新容量(2倍容量)新建1個數組,即新table
Entry[] newTable = new Entry[newCapacity];
// 5. (重點分析)將舊數組上的數據(鍵值對)轉移到新table中,從而完成擴容 ->>分析1.1
transfer(newTable);
// 6. 新數組table引用到HashMap的table屬性上
table = newTable;
// 7. 從新設置閾值
threshold = (int)(newCapacity * loadFactor);
}
/**
* 分析1.1:transfer(newTable);
* 做用:將舊數組上的數據(鍵值對)轉移到新table中,從而完成擴容
* 過程:按舊鏈表的正序遍歷鏈表、在新鏈表的頭部依次插入
*/
void transfer(Entry[] newTable) {
// 1. src引用了舊數組
Entry[] src = table;
// 2. 獲取新數組的大小 = 獲取新容量大小
int newCapacity = newTable.length;
// 3. 經過遍歷 舊數組,將舊數組上的數據(鍵值對)轉移到新數組中
for (int j = 0; j < src.length; j++) {
// 3.1 取得舊數組的每一個元素
Entry<K,V> e = src[j];
if (e != null) {
// 3.2 釋放舊數組的對象引用(for循環後,舊數組再也不引用任何對象)
src[j] = null;
do {
// 3.3 遍歷 以該數組元素爲首 的鏈表
// 注:轉移鏈表時,因是單鏈表,故要保存下1個結點,不然轉移後鏈表會斷開
Entry<K,V> next = e.next;
// 3.3 從新計算每一個元素的存儲位置
int i = indexFor(e.hash, newCapacity);
// 3.4 將元素放在數組上:採用單鏈表的頭插入方式 = 在鏈表頭上存放數據 = 將數組位置的原有數據放在後1個指針、將需放入的數據放到數組位置中
// 即 擴容後,可能出現逆序:按舊鏈表的正序遍歷鏈表、在新鏈表的頭部依次插入
e.next = newTable[i];
newTable[i] = e;
// 訪問下1個Entry鏈上的元素,如此不斷循環,直到遍歷完該鏈表上的全部節點
e = next;
} while (e != null);
// 如此不斷循環,直到遍歷完數組上的全部數據元素
}
}
}
複製代碼
從上面可看出:在擴容resize()
過程當中,在將舊數組上的數據 轉移到 新數組上時,轉移數據操做 = 按舊鏈表的正序遍歷鏈表、在新鏈表的頭部依次插入,即在轉移數據、擴容後,容易出現鏈表逆序的狀況
設從新計算存儲位置後不變,即擴容前 = 1->2->3,擴容後 = 3->2->1
put()
操做,一旦出現擴容狀況,則 容易出現 環形鏈表,從而在獲取數據、遍歷鏈表時 造成死循環(Infinite Loop
),即 死鎖的狀態,具體請看下圖:初始狀態、步驟一、步驟2
注:因爲 JDK 1.8
轉移數據操做 = 按舊鏈表的正序遍歷鏈表、在新鏈表的尾部依次插入,因此不會出現鏈表 逆序、倒置的狀況,故不容易出現環形鏈表的狀況。
但
JDK 1.8
仍是線程不安全,由於 無加同步鎖保護
key
若 Object
類型, 則需實現哪些方法?至此,關於HashMap
的全部知識講解完畢。
Java
的 HashMap
源碼 & 相關知識Java
、 Android
中的其餘知識 深刻講解 ,有興趣能夠繼續關注Carson_Ho的安卓開發筆記