JavaShuo
欄目
標籤
Accelerating deep convolutional networks using low-precision and sparsity
時間 2021-07-12
原文
原文鏈接
(這篇blog不涉及文中所探討的dLAC設計的內容) 這篇文章旨在不影響其準確率的情況下提高deep CNN的計算效率。作者採用了兩種方法:1.使用2-bit代替原來的full precision進行訓練和inference;2.跳過過於zero value的計算。 1 low-precision deep CNN 作者使用了先前研究者提出的ternary network的框架,使用2-bit來訓
>>阅读原文<<
相關文章
1.
Learning Structured Sparsity in Deep Neural Networks
2.
【DDFD】《Multi-view Face Detection Using Deep Convolutional Neural Networks》
3.
Channel Pruning for Accelerating Very Deep Neural Networks
4.
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
5.
(六)6.4 Neurons Networks Autoencoders and Sparsity
6.
論文閱讀-----DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》論文筆記
10.
Convolutional Neural Networks----Deep Convolutional Models:case studies
更多相關文章...
•
W3C RDF and OWL 活動
-
W3C 教程
•
XSL-FO table-and-caption 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
RxJava操作符(六)Utility
相關標籤/搜索
networks
accelerating
convolutional
using
deep
action.....and
between...and
using&n
platform..using
react+and
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Learning Structured Sparsity in Deep Neural Networks
2.
【DDFD】《Multi-view Face Detection Using Deep Convolutional Neural Networks》
3.
Channel Pruning for Accelerating Very Deep Neural Networks
4.
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
5.
(六)6.4 Neurons Networks Autoencoders and Sparsity
6.
論文閱讀-----DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Networks
7.
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
8.
【OverFeat】《OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks》
9.
《Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks》論文筆記
10.
Convolutional Neural Networks----Deep Convolutional Models:case studies
>>更多相關文章<<