咱們知道,CountDownLatch的計數器是一次性的,它不能重置。也就是說,當count值變爲0時,再調用await()方法會當即返回,不會阻塞。
本文要說的CyclicBarrier就是一種能夠重置計數器的線程同步工具類。CyclicBarrier字面意思是「迴環屏障」,它可讓一組線程所有到達一個狀態後再所有同時往下執行。之因此叫回環是由於當全部線程執行完畢,並重置CyclicBarrier的狀態後它能夠被重用。而之因此叫屏障是由於當某個線程調用await方法後就會被阻塞,這個阻塞點就稱爲屏障,等其餘全部線程都調用了await方法後,這組線程就會一塊兒衝破屏障,並往下執行。java
兩個子任務分別執行本身的工做,等它們都執行完後,主任務彙總子任務的結果,並作一些處理,處理完成後兩個子任務又繼續作其餘事情。示例代碼:編程
import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; public class CyclicBarrierDemo { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2, () -> { try { System.out.println("main task merge subtask result begin"); // simulate merge work Thread.sleep(5000); System.out.println("main task merge subtask result finished"); } catch (InterruptedException e) { // ignore } }); public static void main(String[] args) { Thread thread1 = new Thread(() -> { try { Thread.sleep(4000); System.out.println("thread1 finished its work"); cyclicBarrier.await(); System.out.println("thread1 continue work"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); Thread thread2 = new Thread(() -> { try { Thread.sleep(5000); System.out.println("thread2 finished its work"); cyclicBarrier.await(); System.out.println("thread2 continue work"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); thread1.start(); thread2.start(); } }
輸出結果:多線程
能夠看到,線程1和線程2調用await()時,會被阻塞,等主線程任務完成後,線程1和線程2就會衝破屏障,繼續往下執行。這裏的主線程合併工做是可選的,也就是說能夠直接new CyclicBarric(int parties),這種狀況下就沒有到達屏障後的合併工做,會直接在所有線程到達屏障後同時衝破屏障往下執行。能夠比喻成舉辦同窗聚會的場景。有20我的參加聚會,第1我的到達集合地點後要等其餘人,第2個,第3個,...第19我的也須要等,當最後一我的到的時候,所有的20我的就能夠出發去嗨皮了。併發
上面介紹的是「屏障」的應用場景,再來看個「迴環」的應用場景。app
假設一個任務由階段1,階段2,階段3這三個階段組成,每一個線程都串行的依次執行階段1,2,3。當多個線程執行任務時,必須保證等全部線程都執行完階段1後,才能執行階段2,一樣地,也必須保證全部線程都執行完階段2後,才能執行階段3。示例代碼:工具
import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; public class CyclicBarrierDemo2 { private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2); public static void main(String[] args) { Thread thread1 = new Thread(() -> { try { System.out.println("thread1 step 1"); cyclicBarrier.await(); System.out.println("thread1 step 2"); cyclicBarrier.await(); System.out.println("thread1 step 3"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); Thread thread2 = new Thread(() -> { try { System.out.println("thread2 step 1"); cyclicBarrier.await(); System.out.println("thread2 step 2"); cyclicBarrier.await(); System.out.println("thread2 step 3"); } catch (InterruptedException | BrokenBarrierException e) { // ignore } }); thread1.start(); thread2.start(); } }
輸出結果以下:
能夠看到,實現了這種同階段等待的效果。oop
先來看看重要屬性:this
private static class Generation { // 屏障是否被打破 boolean broken = false; } /** The lock for guarding barrier entry */ private final ReentrantLock lock = new ReentrantLock(); /** Condition to wait on until tripped */ private final Condition trip = lock.newCondition(); /** The number of parties */ private final int parties; /* The command to run when tripped */ private final Runnable barrierCommand; /** The current generation */ private Generation generation = new Generation(); /** * Number of parties still waiting. Counts down from parties to 0 on each generation. * It is reset to parties on each new generation or when broken. */ private int count;
能夠看到,CyclicBarrier裏用了獨佔鎖ReentrantLock實現多線程間的計數器同步,parties表示當多少個線程到達屏障後,衝破屏障往下執行,而count表示當前還剩餘多少個線程還未到達屏障,當全部線程都衝破屏障後,它又會在新一輪(new generation)被重置爲parties的值。也就是說,count和Generation是用來實現重置效果的。spa
再看看構造方法的屬性賦值:線程
public CyclicBarrier(int parties, Runnable barrierAction) { if (parties <= 0) throw new IllegalArgumentException(); this.parties = parties; this.count = parties; this.barrierCommand = barrierAction; }
再來看看關鍵方法:
await()
public int await() throws InterruptedException, BrokenBarrierException { try { // false表示不設置超時 return dowait(false, 0L); } catch (TimeoutException toe) { throw new Error(toe); // cannot happen } }
dowait()方法代碼以下:
// timed:是否超時等待, nanos:超時時間 private int dowait(boolean timed, long nanos) throws InterruptedException, BrokenBarrierException, TimeoutException { final ReentrantLock lock = this.lock; lock.lock(); try { final Generation g = generation; if (g.broken) throw new BrokenBarrierException(); if (Thread.interrupted()) { breakBarrier(); throw new InterruptedException(); } int index = --count; // 若是index爲0,表示全部線程都已到達了屏障,此時去執行初始化時設定的barrierCommand(若是有的話) if (index == 0) { // tripped boolean ranAction = false; try { final Runnable command = barrierCommand; if (command != null) command.run(); ranAction = true; // 喚醒其餘線程,並重置進行下一輪 nextGeneration(); // 返回 return 0; } finally { if (!ranAction) breakBarrier(); } } // 不然須要等其餘線程都達到屏障 // loop until tripped, broken, interrupted, or timed out for (;;) { try { // 區分超時等待與不超時等待 if (!timed) trip.await(); else if (nanos > 0L) nanos = trip.awaitNanos(nanos); } catch (InterruptedException ie) { if (g == generation && ! g.broken) { breakBarrier(); throw ie; } else { // We're about to finish waiting even if we had not // been interrupted, so this interrupt is deemed to // "belong" to subsequent execution. Thread.currentThread().interrupt(); } } if (g.broken) throw new BrokenBarrierException(); // g != generation 說明被喚醒後已重置了輪次,說明全部線程均已到達線程屏障,能夠返回了。 if (g != generation) return index; // 等待超時,拋出超時異常 if (timed && nanos <= 0L) { breakBarrier(); throw new TimeoutException(); } } } finally { lock.unlock(); } }
其中,nextGeneration()方法以下:
private void nextGeneration() { // signal completion of last generation // 喚醒等待在trip條件(即屏障)上的其餘全部線程 trip.signalAll(); // set up next generation // 重置count的值爲初始值parties count = parties; // 重置當前輪次 generation = new Generation(); }
參考資料:《Java併發編程之美》