據說你 Binder 機制學的不錯,來解決下這幾個問題(二)

本篇是第二篇,主要是涉及Binder線程與進程的喚醒,傳輸數據的封裝與解析等知識點。java

  • Binder線程的睡眠與喚醒(請求線程睡在哪一個等待隊列上,喚醒目標端哪一個隊列上的線程)
  • Binder協議中BC與BR的區別
  • Binder在傳輸數據的時候是如何層層封裝的--不一樣層次使用的數據結構(命令的封裝)
  • Binder驅動傳遞數據的釋放(釋放時機)
  • 一個簡單的Binder通訊C/S模型

Client端線程睡眠在哪一個隊列上,喚醒Server端哪一個等待隊列上的線程

先看第一部分:發送端線程睡眠在哪一個隊列上?node

發送端線程必定睡眠在本身binder_thread的等待隊列上,而且,該隊列上有且只有本身一個睡眠線程編程

再看第二部分:在Binder驅動去喚醒線程的時候,喚醒的是哪一個等待隊列上的線程?markdown

理解這個問題須要理解binder_thread中的 struct binder_transaction transaction_stack棧,這個棧規定了transaction的執行順序:*棧頂的必定先於棧內執行cookie

若是本地操做是BC_REPLY,必定是喚醒以前發送等待的線程,這個是100%的,可是若是是BC_TRANSACTION,那就不必定了,尤爲是當兩端互爲服務相互請求的時候,場景以下:數據結構

  • 進程A的普通線程AT1請求B進程的B1服務,喚醒B進程的Binder線程,AT1睡眠等待服務結束
  • B進程的B1服務在執行的的時候,須要請求進程A的A1服務,則B進程的Binder線程BT1睡眠,喚醒A進程的Binder線程,等待服務結束
  • A進程的A1服務在執行的時候,又須要B進程的B2服務,則A進程的binder線程AT2睡眠,喚醒B進程的Binder線程,等待服務結束

這個時候就會遇到一個問題:喚醒哪一個線程比較合適?是睡眠在進程隊列上的線程,仍是以前睡眠的線程BT1?答案是:以前睡眠的線程BT1,具體看下面的圖解分析async

首先第一步A普通線程去請求B進程的B1服務,這個時候在A進程的AT1線程的binder_ref中會將binder_transaction1入棧,而一樣B的Binder線程在讀取binder_work以後,也會將binder_transaction1加入本身的堆棧,以下圖:函數

binder_transaction堆棧及喚醒那個隊列1

而當B的Binder線程被喚醒後,執行Binder實體中的服務時,發現服務函數須要反過來去請求A端的A1服務,那就須要經過Binder向A進程發送請求,並新建binder_transaction2壓入本身的binder_transaction堆棧,而A進程的Binder線程被喚醒後也會將binder_transaction2加入本身的堆棧,會後效果以下:oop

binder_transaction堆棧及喚醒那個隊列2.jpg

這個時候,仍是沒有任何問題,可是剛好在執行A1服務的時候,又須要請求B2服務,這個時候,A1線程重複上述壓棧過程,新建binder_transaction3壓入本身的棧,不過在寫入到目標端B的時候,會面臨一個抉擇,寫入那個隊列,是binder_proc上的隊列,仍是正在等候A返回的BT1線程的隊列?post

binder_transaction堆棧及喚醒那個隊列3.jpg

結果已經說過,是BT1的隊列,爲何呢?由於BT1隊列上的以前的binder_transaction2在等待A進程執行完,可是A端的binder_transaction3一樣要等待binder_transaction3在B進程中執行完畢,也就是說,binder_transaction3在B端必定是先於binder_transaction2執行的,所以喚醒BT1線程,並將binder_transaction3壓入BT2的棧,等binder_transaction3執行完畢,出棧後,binder_transaction2才能執行,這樣,既不妨礙binder_transaction2的執行,一樣也能讓睡眠的BT1進程提升利用率,由於最終的堆棧效果就是:

binder_transaction堆棧及喚醒那個隊列4.jpg

而當binder_transaction3完成,出棧的過程其實就簡單了,

  • BT1 執行binder_transaction3,喚醒A端AT2 Binder線程,而且BT1繼續睡眠(由於還有等待的transaction)
  • AT2 執行binder_transaction2,喚醒BT1
  • BT1 執行binder_transaction1,喚醒AT1
  • 執行結束

從這裏能夠看出,其實設計的仍是很巧妙的,讓線程複用,提升了效率,還避免了新建沒必要要的Binder線程,在binder驅動中島實現代碼,其實就是根據binder_transaction中堆棧記錄查詢,
static void binder_transaction(struct binder_proc proc,
struct binder_thread
thread,
struct binder_transaction_data *tr, int reply)
{..
while (tmp) {
// 找到對方正在等待本身進程的線程,若是線程沒有在等待本身進程的返回,就不要找了

// 判斷是不target_proc中,是否是有線程,等待當前線程
                    // thread->transaction_stack,這個時候,
                    // 是binder線程的,不是普通線程 B去請求A服務,
                    // 在A服務的時候,又請求了B,這個時候,A的服務必定要等B處理完,才能再返回B,能夠放心用B
                        if (tmp->from && tmp->from->proc == target_proc)
                            target_thread = tmp->from;
                        tmp = tmp->from_parent;
          ...            }
        } }複製代碼

Binder協議中BC與BR的區別

BC與BR主要是標誌數據及Transaction流向,其中BC是從用戶空間流向內核,而BR是從內核流線用戶空間,好比Client向Server發送請求的時候,用的是BC_TRANSACTION,當數據被寫入到目標進程後,target_proc所在的進程被喚醒,在內核空間中,會將BC轉換爲BR,並將數據與操做傳遞該用戶空間。

BR與BC區別

Binder在傳輸數據的時候是如何層層封裝的--不一樣層次使用的數據結構(命令的封裝)

內核中,與用戶空間對應的結構體對象都須要新建,但傳輸數據的數據只拷貝一次,就是一次拷貝的時候。

從Client端請求開始分析,暫不考慮java層,只考慮Native,以ServiceManager的addService爲例,具體看一下

MediaPlayerService::instantiate();複製代碼

MediaPlayerService會新建Binder實體,並將其註冊到ServiceManager中:

void MediaPlayerService::instantiate() {
    defaultServiceManager()->addService(
            String16("media.player"), new MediaPlayerService());
}    複製代碼

這裏defaultServiceManager其實就是獲取ServiceManager的遠程代理:

sp<IServiceManager> defaultServiceManager()
{
    if (gDefaultServiceManager != NULL) return gDefaultServiceManager;

    {
        AutoMutex _l(gDefaultServiceManagerLock);
        if (gDefaultServiceManager == NULL) {
            gDefaultServiceManager = interface_cast<IServiceManager>(
                ProcessState::self()->getContextObject(NULL));
        }
    }

    return gDefaultServiceManager;
}複製代碼

若是將代碼簡化其實就是

return gDefaultServiceManager = BpServiceManager (new BpBinder(0));複製代碼

addService就是調用BpServiceManager的addService,

virtual status_t addService(const String16& name, const sp<IBinder>& service,
        bool allowIsolated)
{
    Parcel data, reply;
    data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
    data.writeString16(name);
    data.writeStrongBinder(service);
    data.writeInt32(allowIsolated ? 1 : 0);
    status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
    return err == NO_ERROR ? reply.readExceptionCode() : err;
}複製代碼

這裏會開始第一步的封裝,數據封裝,其實就是講具體的傳輸數據寫入到Parcel對象中,與Parcel對應是ADD_SERVICE_TRANSACTION等具體操做。比較須要注意的就是data.writeStrongBinder,這裏其實就是把Binder實體壓扁:

status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
{
    return flatten_binder(ProcessState::self(), val, this);
}複製代碼

具體作法就是轉換成flat_binder_object,以傳遞Binder的類型、指針之類的信息:

status_t flatten_binder(const sp<ProcessState>& proc,
    const sp<IBinder>& binder, Parcel* out)
{
    flat_binder_object obj;

    obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
    if (binder != NULL) {
        IBinder *local = binder->localBinder();
        if (!local) {
            BpBinder *proxy = binder->remoteBinder();
            if (proxy == NULL) {
                ALOGE("null proxy");
            }
            const int32_t handle = proxy ? proxy->handle() : 0;
            obj.type = BINDER_TYPE_HANDLE;
            obj.handle = handle;
            obj.cookie = NULL;
        } else {
            obj.type = BINDER_TYPE_BINDER;
            obj.binder = local->getWeakRefs();
            obj.cookie = local;
        }
    } else {
        obj.type = BINDER_TYPE_BINDER;
        obj.binder = NULL;
        obj.cookie = NULL;
    }

    return finish_flatten_binder(binder, obj, out);
}複製代碼

接下來看 remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); 在上面的環境中,remote()函數返回的就是BpBinder(0),

status_t BpBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    // Once a binder has died, it will never come back to life.
    if (mAlive) {
        status_t status = IPCThreadState::self()->transact(
            mHandle, code, data, reply, flags);
        if (status == DEAD_OBJECT) mAlive = 0;
        return status;
    }

    return DEAD_OBJECT;
}複製代碼

以後經過 IPCThreadState::self()->transact( mHandle, code, data, reply, flags)進行進一步封裝:

status_t IPCThreadState::transact(int32_t handle,
                uint32_t code, const Parcel& data,
                Parcel* reply, uint32_t flags){
    if ((flags & TF_ONE_WAY) == 0) {
        if (err == NO_ERROR) {
            err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
        }
        if (reply) {
            err = waitForResponse(reply);
        } 
        ..
    return err;
    }複製代碼

writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);是進一步封裝的入口,在這個函數中Parcel& data、handle、code、被進一步封裝成binder_transaction_data對象,並拷貝到mOut的data中去,同時也會將BC_TRANSACTION命令也寫入mOut,這裏與binder_transaction_data對應的CMD是BC_TRANSACTION,binder_transaction_data也存儲了數據的指引新信息:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
    int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
    binder_transaction_data tr;
    tr.target.handle = handle;
    tr.code = code;
    tr.flags = binderFlags;
    tr.cookie = 0;
    tr.sender_pid = 0;
    tr.sender_euid = 0;
    const status_t err = data.errorCheck();
    if (err == NO_ERROR) {
        tr.data_size = data.ipcDataSize();
        tr.data.ptr.buffer = data.ipcData();
        tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
        tr.data.ptr.offsets = data.ipcObjects();
    } ..
    mOut.writeInt32(cmd);
    mOut.write(&tr, sizeof(tr));
    return NO_ERROR;
}複製代碼

mOut封裝結束後,會經過waitForResponse調用talkWithDriver繼續封裝:

status_t IPCThreadState::talkWithDriver(bool doReceive)
{
    binder_write_read bwr;
    // Is the read buffer empty? 這裏會有同時返回兩個命令的狀況 BR_NOOP、BR_COMPLETE
    const bool needRead = mIn.dataPosition() >= mIn.dataSize();
    // We don't want to write anything if we are still reading
    // from data left in the input buffer and the caller
    // has requested to read the next data.
    const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;
    bwr.write_size = outAvail;
    bwr.write_buffer = (long unsigned int)mOut.data();        // This is what we'll read.
    if (doReceive && needRead) {
        bwr.read_size = mIn.dataCapacity();
        bwr.read_buffer = (long unsigned int)mIn.data();
    } else {
        bwr.read_size = 0;
        bwr.read_buffer = 0;
    }
    // Return immediately if there is nothing to do.
    if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;
    bwr.write_consumed = 0;
    bwr.read_consumed = 0;
    status_t err;
    do {
        。。
        if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)
            err = NO_ERROR;
        if (mProcess->mDriverFD <= 0) {
            err = -EBADF;
        }
    } while (err == -EINTR);

    if (err >= NO_ERROR) {
        if (bwr.write_consumed > 0) {
            if (bwr.write_consumed < (ssize_t)mOut.dataSize())
                mOut.remove(0, bwr.write_consumed);
            else
                mOut.setDataSize(0);
        }
        if (bwr.read_consumed > 0) {
            mIn.setDataSize(bwr.read_consumed);
            mIn.setDataPosition(0);
        }
        return NO_ERROR;
    }
    return err;
}複製代碼

talkWithDriver會將mOut中的數據與命令繼續封裝成binder_write_read對象,其中bwr.write_buffer就是mOut中的data(binder_transaction_data+BC_TRRANSACTION),以後就會經過ioctl與binder驅動交互,進入內核,這裏與binder_write_read對象對應的CMD是BINDER_WRITE_READ,進入驅動後,是先寫後讀的順序,因此才叫BINDER_WRITE_READ命令,與BINDER_WRITE_READ層級對應的幾個命令碼通常都是跟線程、進程、數據總體傳輸相關的操做,不涉及具體的業務處理,好比BINDER_SET_CONTEXT_MGR是將線程編程ServiceManager線程,並建立0號Handle對應的binder_node、BINDER_SET_MAX_THREADS是設置最大的非主Binder線程數,而BINDER_WRITE_READ就是表示這是一次讀寫操做:

#define BINDER_CURRENT_PROTOCOL_VERSION 7
#define BINDER_WRITE_READ _IOWR('b', 1, struct binder_write_read)
#define BINDER_SET_IDLE_TIMEOUT _IOW('b', 3, int64_t)
#define BINDER_SET_MAX_THREADS _IOW('b', 5, size_t)
/* WARNING: DO NOT EDIT, AUTO-GENERATED CODE - SEE TOP FOR INSTRUCTIONS */
#define BINDER_SET_IDLE_PRIORITY _IOW('b', 6, int)
#define BINDER_SET_CONTEXT_MGR _IOW('b', 7, int)
#define BINDER_THREAD_EXIT _IOW('b', 8, int)
#define BINDER_VERSION _IOWR('b', 9, struct binder_version)複製代碼

詳細看一下binder_ioctl對於BINDER_WRITE_READ的處理,

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
    switch (cmd) {
    case BINDER_WRITE_READ: {
        struct binder_write_read bwr;
        ..
        <!--拷貝binder_write_read對象到內核空間-->
        if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
            ret = -EFAULT;
            goto err;
        }
        <!--根據是否須要寫數據處理是否是要寫到目標進程中去-->
        if (bwr.write_size > 0) {
            ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
        }
      <!--根據是否須要寫數據處理是否是要讀,往本身進程裏讀數據-->
        if (bwr.read_size > 0) {
            ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
            <!--是否是要同時喚醒進程上的阻塞隊列--> if (!list_empty(&proc->todo)) wake_up_interruptible(&proc->wait); } break; } case BINDER_SET_MAX_THREADS: if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) { } break; case BINDER_SET_CONTEXT_MGR: .. break; case BINDER_THREAD_EXIT: binder_free_thread(proc, thread); thread = NULL; break; case BINDER_VERSION: .. }複製代碼

binder_thread_write(proc, thread, (void __user )bwr.write_buffer, bwr.write_size, &bwr.write_consumed)這裏其實就是把解析的binder_write_read對象再剝離,*bwr.write_buffer 就是上面的(BC_TRANSACTION+ binder_transaction_data),

int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
            void __user *buffer, int size, signed long *consumed)
{
    uint32_t cmd;
    void __user *ptr = buffer + *consumed;
    void __user *end = buffer + size;
    while (ptr < end && thread->return_error == BR_OK) {

        // binder_transaction_data BC_XXX+binder_transaction_data
        if (get_user(cmd, (uint32_t __user *)ptr))  (BC_TRANSACTION)
            return -EFAULT;
        ptr += sizeof(uint32_t);
        switch (cmd) {
        ..
        case BC_FREE_BUFFER: {
            ...
        }
        case BC_TRANSACTION:
        case BC_REPLY: {
            struct binder_transaction_data tr;
            if (copy_from_user(&tr, ptr, sizeof(tr)))
                return -EFAULT;
            ptr += sizeof(tr);
            binder_transaction(proc, thread, &tr, cmd == BC_REPLY);
            break;
        }
        case BC_REGISTER_LOOPER:
            ..
        case BC_ENTER_LOOPER:
            ...
            thread->looper |= BINDER_LOOPER_STATE_ENTERED;
            break;
        case BC_EXIT_LOOPER:
        // 這裏會修改讀取的數據,
        *consumed = ptr - buffer;
    }
    return 0;
}複製代碼

binder_thread_write會進一步根據CMD剝離出binder_transaction_data tr,交給binder_transaction處理,其實到binder_transaction數據幾乎已經剝離極限,剩下的都是業務相關的,可是這裏牽扯到一個Binder實體與Handle的轉換過程,同城也牽扯兩個進程在內核空間共享一些數據的問題,所以這裏又進行了一次進一步的封裝與拆封裝,這裏新封裝了連個對象 binder_transaction與binder_work,有所區別的是binder_work能夠看作是進程私有,可是binder_transaction是兩個交互的進程共享的:binder_work是插入到線程或者進程的work todo隊列上去的:

struct binder_thread {
    struct binder_proc *proc;
    struct rb_node rb_node;
    int pid;
    int looper;
    struct binder_transaction *transaction_stack;
    struct list_head todo;
    uint32_t return_error; /* Write failed, return error code in read buf */
    uint32_t return_error2; /* Write failed, return error code in read */
    wait_queue_head_t wait;
    struct binder_stats stats;
};複製代碼

這裏主要關心一下binder_transaction:binder_transaction主要記錄了當前transaction的來源,去向,同時也爲了返回作準備,buffer字段是一次拷貝後數據在Binder的內存地址。

struct binder_transaction {
    int debug_id;
    struct binder_work work;
    struct binder_thread *from; 
    struct binder_transaction *from_parent;
    struct binder_proc *to_proc;
    struct binder_thread *to_thread;
    struct binder_transaction *to_parent;
    unsigned need_reply:1;
    /* unsigned is_dead:1; */    /* not used at the moment */
    struct binder_buffer *buffer;
    unsigned int    code;
    unsigned int    flags;
    long    priority;
    long    saved_priority;
    uid_t    sender_euid;
};複製代碼

binder_transaction函數主要負責的工做:

  • 新建binder_transaction對象,並插入到本身的binder_transaction堆棧中
  • 新建binder_work對象,插入到目標隊列
  • Binder與Handle的轉換 (flat_binder_object)

    static void binder_transaction(struct binder_proc *proc,
                         struct binder_thread *thread,
                         struct binder_transaction_data *tr, int reply)
      {
          struct binder_transaction *t;
          struct binder_work *tcomplete;
          size_t *offp, *off_end;
          struct binder_proc *target_proc;
          struct binder_thread *target_thread = NULL;
          struct binder_node *target_node = NULL;
        **關鍵點1** 
      if (reply) {
          in_reply_to = thread->transaction_stack;
          thread->transaction_stack = in_reply_to->to_parent;
          target_thread = in_reply_to->from;
          target_proc = target_thread->proc;
          }else {
          if (tr->target.handle) {
              struct binder_ref * ref;
                  ref = binder_get_ref(proc, tr->target.handle);
                  target_node = ref->node;
              } else {
                  target_node = binder_context_mgr_node;
              }
            ..。
      **關鍵點2**
          t = kzalloc(sizeof( * t), GFP_KERNEL); 
          ...
          tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);
    
     **關鍵點3 **
      off_end = (void *)offp + tr->offsets_size;
    
      for (; offp < off_end; offp++) {
          struct flat_binder_object *fp;
          fp = (struct flat_binder_object *)(t->buffer->data + *offp);
          switch (fp->type) {
          case BINDER_TYPE_BINDER:
          case BINDER_TYPE_WEAK_BINDER: {
              struct binder_ref *ref;
              struct binder_node *node = binder_get_node(proc, fp->binder);
              if (node == NULL) {
                  node = binder_new_node(proc, fp->binder, fp->cookie);
              }..
              ref = (target_proc, node);                   if (fp->type == BINDER_TYPE_BINDER)
                  fp->type = BINDER_TYPE_HANDLE;
              else
                  fp->type = BINDER_TYPE_WEAK_HANDLE;
              fp->handle = ref->desc;
          } break;
          case BINDER_TYPE_HANDLE:
          case BINDER_TYPE_WEAK_HANDLE: {
              struct binder_ref *ref = binder_get_ref(proc, fp->handle);
              if (ref->node->proc == target_proc) {
                  if (fp->type == BINDER_TYPE_HANDLE)
                      fp->type = BINDER_TYPE_BINDER;
                  else
                      fp->type = BINDER_TYPE_WEAK_BINDER;
                  fp->binder = ref->node->ptr;
                  fp->cookie = ref->node->cookie;
              } else {
                  struct binder_ref *new_ref;
                  new_ref = binder_get_ref_for_node(target_proc, ref->node);
                  fp->handle = new_ref->desc;
              }
          } break;
    
       **關鍵點4** 將binder_work 插入到目標隊列
    
        t->work.type = BINDER_WORK_TRANSACTION;
      list_add_tail(&t->work.entry, target_list);
      tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
      list_add_tail(&tcomplete->entry, &thread->todo);
      if (target_wait)
          wake_up_interruptible(target_wait);
      return;複製代碼

    }

關鍵點1,找到目標進程,關鍵點2 建立binder_transaction與binder_work,關鍵點3 處理Binder實體與Handle轉化,關鍵點4,將binder_work插入目標隊列,並喚醒相應的等待隊列,在處理Binder實體與Handle轉化的時候,有下面幾點注意的:

  • 第一次註冊Binder實體的時候,是向別的進程註冊的,ServiceManager,或者SystemServer中的AMS服務
  • Client請求服務的時候,必定是由Binder驅動爲Client分配binder_ref,若是本進程的線程請求,fp->type = BINDER_TYPE_BINDER,不然就是fp->type = BINDER_TYPE_HANDLE。
  • Android中的Parcel裏面的對象必定是flat_binder_object

如此下來,寫數據的流程所經歷的數據結構就完了。再簡單看一下被喚醒一方的讀取流程,讀取從阻塞在內核態的binder_thread_read開始,以傳遞而來的BC_TRANSACTION爲例,binder_thread_read會根據一些場景添加BRXXX參數,標識驅動傳給用戶空間的數據流向:

enum BinderDriverReturnProtocol {

 BR_ERROR = _IOR_BAD('r', 0, int),
 BR_OK = _IO('r', 1),
 BR_TRANSACTION = _IOR_BAD('r', 2, struct binder_transaction_data),
 BR_REPLY = _IOR_BAD('r', 3, struct binder_transaction_data),

 BR_ACQUIRE_RESULT = _IOR_BAD('r', 4, int),
 BR_DEAD_REPLY = _IO('r', 5),
 BR_TRANSACTION_COMPLETE = _IO('r', 6),
 BR_INCREFS = _IOR_BAD('r', 7, struct binder_ptr_cookie),

 BR_ACQUIRE = _IOR_BAD('r', 8, struct binder_ptr_cookie),
 BR_RELEASE = _IOR_BAD('r', 9, struct binder_ptr_cookie),
 BR_DECREFS = _IOR_BAD('r', 10, struct binder_ptr_cookie),
 BR_ATTEMPT_ACQUIRE = _IOR_BAD('r', 11, struct binder_pri_ptr_cookie),

 BR_NOOP = _IO('r', 12),
 BR_SPAWN_LOOPER = _IO('r', 13),
 BR_FINISHED = _IO('r', 14),
 BR_DEAD_BINDER = _IOR_BAD('r', 15, void *),

 BR_CLEAR_DEATH_NOTIFICATION_DONE = _IOR_BAD('r', 16, void *),
 BR_FAILED_REPLY = _IO('r', 17),
};複製代碼

以後,read線程根據binder_transaction新建binder_transaction_data對象,再經過copy_to_user,傳遞給用戶空間,

static int
binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
    void  __user *buffer, int size, signed long *consumed, int non_block)
{
    while (1) {
            uint32_t cmd;
         struct binder_transaction_data tr ;
            struct binder_work *w;
            struct binder_transaction *t = NULL;

        if (!list_empty(&thread->todo))
            w = list_first_entry(&thread->todo, struct binder_work, entry);
        else if (!list_empty(&proc->todo) && wait_for_proc_work)
            w = list_first_entry(&proc->todo, struct binder_work, entry);
        else {
            if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */
                goto retry;
            break;
        }

    // 數據大小
        tr.data_size = t->buffer->data_size;
        tr.offsets_size = t->buffer->offsets_size;
    // 偏移地址要加上
        tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;
        tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));
    // 寫命令
        if (put_user(cmd, (uint32_t __user *)ptr))
            return -EFAULT;
        // 寫數據結構體到用戶空間,
        ptr += sizeof(uint32_t);
        if (copy_to_user(ptr, &tr, sizeof(tr)))
            return -EFAULT;
        ptr += sizeof(tr);
}複製代碼

上層經過ioctrl等待的函數被喚醒,假設如今被喚醒的是服務端,通常會執行請求,這裏首先經過Parcel的ipcSetDataReference函數將數據將數據映射到Parcel對象中,以後再經過BBinder的transact函數處理具體需求;

status_t IPCThreadState::executeCommand(int32_t cmd)
{
    ...
    // read到了數據請求,這裏是須要處理的邏輯 ,處理完畢,
    case BR_TRANSACTION:
        {
            binder_transaction_data tr;
            Parcel buffer;
            buffer.ipcSetDataReference(
                reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                tr.data_size,
                reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
                tr.offsets_size/sizeof(size_t), freeBuffer, this);
     ...
 // 這裏是處理 若是非空,就是數據有效,
    if (tr.target.ptr) {
        // 這裏什麼是tr.cookie
        sp<BBinder> b((BBinder*)tr.cookie);
        const status_t error = b->transact(tr.code, buffer, &reply, tr.flags);
        if (error < NO_ERROR) reply.setError(error);

    }   複製代碼

這裏的 b->transact(tr.code, buffer, &reply, tr.flags);就同一開始Client調用transact( mHandle, code, data, reply, flags)函數對應的處理相似,進入相對應的業務邏輯。

Binder在傳輸數據的時候是如何層層封裝的--不一樣層次使用的數據結構(命令的封裝.jpg

Binder驅動傳遞數據的釋放(釋放時機)

在Binder通訊的過程當中,數據是從發起通訊進程的用戶空間直接寫到目標進程內核空間,而這部分數據是直接映射到用戶空間,必須等用戶空間使用完數據才能釋放,也就是說Binder通訊中內核數據的釋放時機應該是用戶空間控制的,內種中釋放內存空間的函數是binder_free_buf,其餘的數據結構其實能夠直接釋放掉,執行這個函數的命令是BC_FREE_BUFFER。上層用戶空間經常使用的入口是IPCThreadState::freeBuffer:

void IPCThreadState::freeBuffer(Parcel* parcel, const uint8_t* data, size_t dataSize,
                                const size_t* objects, size_t objectsSize,
                                void* cookie)
{
    if (parcel != NULL) parcel->closeFileDescriptors();
    IPCThreadState* state = self();
    state->mOut.writeInt32(BC_FREE_BUFFER);
    state->mOut.writeInt32((int32_t)data);
}複製代碼

那何時會調用這個函數呢?在以前分析數據傳遞的時候,有一步是將binder_transaction_data中的數據映射到Parcel中去,其實這裏是關鍵

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
    int32_t cmd;
    int32_t err;

    while (1) {
    ...
        case BR_REPLY:
            {
            binder_transaction_data tr;
            // 注意這裏是沒有傳輸數據拷貝的,只有一個指針跟數據結構的拷貝,
            err = mIn.read(&tr, sizeof(tr));
            ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
            if (err != NO_ERROR) goto finish;
            // free buffer,先設置數據,直接
            if (reply) {
                if ((tr.flags & TF_STATUS_CODE) == 0) {
                    // 牽扯到數據利用,與內存釋放
                    reply->ipcSetDataReference(
                        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                        tr.data_size,
                        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
                        tr.offsets_size/sizeof(size_t),
                        freeBuffer, this);複製代碼

Parcel 的ipcSetDataReference函數不只僅能講數據映射到Parcel對象,同時還能將數據的清理函數映射進來

void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
    const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)複製代碼

看函數定義中的release_func relFunc參數,這裏就是指定內存釋放函數,這裏指定了IPCThreadState::freeBuffer函數,在Native層,Parcel在使用完,並走完本身的生命週期後,就會調用本身的析構函數,在其析構函數中調用了freeDataNoInit(),這個函數會間接調用上面設置的內存釋放函數:

Parcel::~Parcel()
{
    freeDataNoInit();
}複製代碼

這就是數據釋放的入口,進入內核空間後,執行binder_free_buf,將此次分配的內存釋放,同時更新binder_proc的binder_buffer表,從新標記那些內存塊被使用了,哪些沒被使用。

static void binder_free_buf(struct binder_proc *proc,
                struct binder_buffer *buffer)
{
    size_t size, buffer_size;
    buffer_size = binder_buffer_size(proc, buffer);
    size = ALIGN(buffer->data_size, sizeof(void *)) +
        ALIGN(buffer->offsets_size, sizeof(void *));
    binder_debug(BINDER_DEBUG_BUFFER_ALLOC,
             "binder: %d: binder_free_buf %p size %zd buffer"
             "_size %zd\n", proc->pid, buffer, size, buffer_size);

    if (buffer->async_transaction) {
        proc->free_async_space += size + sizeof(struct binder_buffer);
        binder_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
                 "binder: %d: binder_free_buf size %zd "
                 "async free %zd\n", proc->pid, size,
                 proc->free_async_space);
    }
    binder_update_page_range(proc, 0,
        (void *)PAGE_ALIGN((uintptr_t)buffer->data),
        (void *)(((uintptr_t)buffer->data + buffer_size) & PAGE_MASK),
        NULL);
    rb_erase(&buffer->rb_node, &proc->allocated_buffers);
    buffer->free = 1;
    if (!list_is_last(&buffer->entry, &proc->buffers)) {
        struct binder_buffer *next = list_entry(buffer->entry.next,
                        struct binder_buffer, entry);
        if (next->free) {
            rb_erase(&next->rb_node, &proc->free_buffers);
            binder_delete_free_buffer(proc, next);
        }
    }
    if (proc->buffers.next != &buffer->entry) {
        struct binder_buffer *prev = list_entry(buffer->entry.prev,
                        struct binder_buffer, entry);
        if (prev->free) {
            binder_delete_free_buffer(proc, buffer);
            rb_erase(&prev->rb_node, &proc->free_buffers);
            buffer = prev;
        }
    }
    binder_insert_free_buffer(proc, buffer);
}複製代碼

Java層相似,經過JNI調用Parcel的freeData()函數釋放內存,在用戶空間,每次執行BR_TRANSACTION或者BR_REPLY,都會利用freeBuffer發送請求,去釋放內核中的內存

簡單的Binder通訊C/S模型

簡單的Binder通訊模型

據說你Binder機制學的不錯,來解決下這幾個問題(一)
據說你 Binder 機制學的不錯,來解決下這幾個問題(二)
據說你 Binder 機制學的不錯,來解決下這幾個問題(三)

僅供參考,歡迎指正

相關文章
相關標籤/搜索