本文首發於我的博客kezunlin.me/post/6b505d…,歡迎閱讀最新內容!html
full guide tutorial to install and configure deep learning environments on linux server node
for windows:python
drop files to MobaXterm to upload to serverlinux
use
zip
formatgit
view diskgithub
du -d 1 -h
df -h複製代碼
gpu and cpu usageweb
watch -n 1 nvidia-smi
top 複製代碼
view files and countdocker
wc -l data.csv複製代碼
# count how many folders
ls -lR | grep '^d' | wc -l
17複製代碼
# count how many jpg files
ls -lR | grep '.jpg' | wc -l
1360複製代碼
# view 10 images
ls train | head
ls test | head複製代碼
link datasetsjson
# link
ln -s srt dest
ln -s /data_1/kezunlin/datasets/ dl4cv/datasets複製代碼
scpredux
scp -r node17:~/dl4cv ~/git/
scp -r node17:~/.keras ~/複製代碼
tmux for background tasks
tmux new -s notebook
tmux ls
tmux attach -t notebook
tmux detach複製代碼
wget download
# wget
# continue donwload
wget -c url 複製代碼
# background donwload for large file
wget -b -c url
tail -f wget-log複製代碼
# kill background wget
pkill -9 wget複製代碼
tips about training large model
terminal 1:
tmux new -s train
conda activate keras複製代碼
time python train_alexnet.py複製代碼
terminal 2:
tmux detach複製代碼
tmux attach -t train複製代碼
and then close vscode, otherwise bash training process will exit when we close vscode.
see cuda-toolkit for cuda driver version
cudatookit version depends on cuda driver version.
sudo add-apt-repository ppa:graphics-drivers/ppa
sudp apt-get update複製代碼
sudo apt-cache search nvidia-*
# nvidia-384
# nvidia-396
sudo apt-get -y install nvidia-418複製代碼
# test
nvidia-smi
Failed to initialize NVML: Driver/library version mismatch
> reboot to test again
> https://stackoverflow.com/questions/43022843/nvidia-nvml-driver-library-version-mismatch複製代碼
remove all previous nvidia drivers
sudo apt-get -y pruge nvidia-*複製代碼
go to here and download cuda_10.1
wget -b -c http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run
sudo sh cuda_10.1.243_418.87.00_linux.run複製代碼
sudo ./cuda_10.1.243_418.87.00_linux.run複製代碼
vim .bashrc
# for cuda and cudnn
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
複製代碼
check cuda driver version
> cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module 418.87.00 Thu Aug 8 15:35:46 CDT 2019
GCC version: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.11)
複製代碼
>nvidia-smi
Tue Aug 27 17:36:35 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.00 Driver Version: 418.87.00 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
複製代碼
> nvidia-smi -L
GPU 0: Quadro RTX 8000 (UUID: GPU-acb01c1b-776d-cafb-ea35-430b3580d123)
GPU 1: Quadro RTX 8000 (UUID: GPU-df7f0fb8-1541-c9ce-e0f8-e92bccabf0ef)
GPU 2: Quadro RTX 8000 (UUID: GPU-67024023-20fd-a522-dcda-261063332731)
GPU 3: Quadro RTX 8000 (UUID: GPU-7f9d6a27-01ec-4ae5-0370-f0c356327913)複製代碼
> nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243複製代碼
./Anaconda3-2019.03-Linux-x86_64.sh
[yes]
[yes]複製代碼
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/複製代碼
conda config --set show_channel_urls yes複製代碼
conclusions:
keras 2.2.5 was released on 2019/8/23.
Add new Applications: ResNet101, ResNet152, ResNet50V2, ResNet101V2, ResNet152V2.
common libraries
conda install -y scikit-learn scikit-image pandas matplotlib pillow opencv seaborn
pip install imutils progressbar pydot pylint複製代碼
pip install imutils
to avoid downgrade for tensorflow-gpu
cudatoolkit 10.0.130 0
cudnn 7.6.0 cuda10.0_0
tensorflow-gpu 1.13.1 複製代碼
cudatoolkit anaconda/pkgs/main/linux-64::cudatoolkit-10.1.168-0cudnn anaconda/pkgs/main/linux-64::cudnn-7.6.0-cuda10.1_0tensorboard anaconda/pkgs/main/linux-64::tensorboard-1.14.0-py36hf484d3e_0tensorflow anaconda/pkgs/main/linux-64::tensorflow-1.14.0-gpupy36h3fb9ad60tensorflow-base anaconda/pkgs/main/linux-64::tensorflow-base-1.14.0-gpupy36he45bfe20tensorflow-estima~ anaconda/cloud/conda-forge/linux-64::tensorflow-estimator-1.14.0-py36h5ca1d4c_0tensorflow-gpu anaconda/pkgs/main/linux-64::tensorflow-gpu-1.14.0-h0d30ee6_0
imutils only support 36 and 37.
mxnet only support 35 and 36.
# remove py35
conda remove -n py35 --all複製代碼
conda info --envs複製代碼
conda create -n py37 python==3.7
conda activate py37複製代碼
# common libraries
conda install -y scikit-learn pandas pillow opencv
pip install imutils複製代碼
# imutils
conda search imutils
# py36 and py37複製代碼
# Name Version Build Channel
imutils 0.5.2 py27_0 anaconda/cloud/conda-forge
imutils 0.5.2 py36_0 anaconda/cloud/conda-forge
imutils 0.5.2 py37_0 anaconda/cloud/conda-forge複製代碼
# tensorflow-gpu and keras
conda install -y tensorflow-gpu keras複製代碼
# install pytorch
conda install -y pytorch torchvision複製代碼
# install mxnet
# method 1: pip
pip search mxnet
mxnet-cu80[mkl]/mxnet-cu90[mkl]/mxnet-cu91[mkl]/mxnet-cu92[mkl]/mxnet-cu100[mkl]/mxnet-cu101[mkl]複製代碼
# method 2: conda
conda install mxnet
# py35 and py36複製代碼
home page: home page
download tensorflow models and rename models-master
to tfmodels
vim ~/.bashrc
export PYTHONPATH=/home/kezunlin/dl4cv:/data_1/kezunlin/tfmodels/research:$PYTHONPATH複製代碼
source ~/.bashrc
conda activate py37
conda install -y jupyter 複製代碼
python -m ipykernel install --user --name=py37Installed kernelspec py37 in /home/kezunlin/.local/share/jupyter/kernels/py37
python -c "import IPython;print(IPython.lib.passwd())"
Enter password:
Verify password:
sha1:ef2fb2aacff2:4ea2998699638e58d10d594664bd87f9c3381c04複製代碼
jupyter notebook --generate-config
Writing default config to: /home/kezunlin/.jupyter/jupyter_notebook_config.py複製代碼
vim .jupyter/jupyter_notebook_config.py複製代碼
c.NotebookApp.ip = '*'
c.NotebookApp.password = u'sha1:xxx:xxx'
c.NotebookApp.open_browser = False
c.NotebookApp.port = 8888
c.NotebookApp.enable_mathjax = True複製代碼
tmux new -s notebook
jupyter notebook
# ctlr+b+d exit session and DO NOT close session
# ctlr+d exit session and close session複製代碼
access web and input password
import cv2cv2.__versionimport tensorflow as tfimport kerasimport torchimport torchvision
cat .keras/keras.json
{
"epsilon": 1e-07,
"floatx": "float32",
"backend": "tensorflow",
"image_data_format": "channels_last"
}
複製代碼
import mxnet
export CUDAVISIBLEDEVICES=""
# use gpu 0 1
export CUDA_VISIBLE_DEVICES="0,1"複製代碼
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"複製代碼
start train
python train.py
複製代碼
view keras models and datasets
ls .keras/
datasets keras.json models複製代碼
models saved to
/home/kezunlin/.keras/models/
datasets saved to
/home/kezunlin/.keras/datasets/
models lists
xxx_kernels_notop.h5
forinclude_top = False
xxx_kernels.h5
forinclude_top = True
to skip download
wget http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
mv ~/Download/cifar-10-python.tar.gz ~/.keras/datasets/cifar-10-batches-py.tar.gz複製代碼
to load data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()複製代碼
panda images are WRONG !!!
counts
ls -lR animals/cat | grep ".jpg" | wc -l
1000
ls -lR animals/dog | grep ".jpg" | wc -l
1000
ls -lR animals/panda | grep ".jpg" | wc -l
1000複製代碼
download background
wget -b -c http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz
複製代碼
see kaggle-api
conda activate keras
conda install kaggle複製代碼
# download kaggle.json
mv kaggle.json ~/.kaggle/kaggle.json
chmod 600 ~/.kaggle/kaggle.json複製代碼
cat kaggle.json
{"username":"xxx","key":"yyy"}複製代碼
or by export
export KAGGLE_USERNAME=xxx
export KAGGLE_KEY=yyy複製代碼
tips
1. go to account and select 'Create API Token' and
keras.json
will be downloaded.2. Ensure
kaggle.json
is in the location~/.kaggle/kaggle.json
to use the API.
check version
kaggle --version
Kaggle API 1.5.5複製代碼
commands
kaggle competitions {list, files, download, submit, submissions, leaderboard}
kaggle datasets {list, files, download, create, version, init}
kaggle kernels {list, init, push, pull, output, status}
kaggle config {view, set, unset}複製代碼
kaggle competitions download -c dogs-vs-cats複製代碼
kaggle competitions leaderboard dogs-vs-cats --show
teamId teamName submissionDate score
------ --------------------------------- ------------------- -------
71046 Pierre Sermanet 2014-02-01 21:43:19 0.98533
66623 Maxim Milakov 2014-02-01 18:20:58 0.98293
72059 Owen 2014-02-01 17:04:40 0.97973
74563 Paul Covington 2014-02-01 23:05:20 0.97946
74298 we've been in KAIST 2014-02-01 21:15:30 0.97840
71949 orchid 2014-02-01 23:52:30 0.97733
複製代碼
kaggle config set --name competition --value dogs-vs-cats
- competition is now set to: dogs-vs-cats複製代碼
kaggle config set --name competition --value dogs-vs-cats-redux-kernels-edition
> dogs-vs-cats
> dogs-vs-cats-redux-kernels-edition複製代碼
kaggle c submissions
- Using competition: dogs-vs-cats
- No submissions found複製代碼
kaggle c submit -f ./submission.csv -m "first submit"複製代碼
competition has already ended, so can not submit.
sudo apt-get -y install docker
# Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd複製代碼
cat /etc/docker/daemon.json
{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
}
}複製代碼
sudo systemctl enable docker
sudo systemctl start docker複製代碼
if errors occur:
Job for docker.service failed because the control process exited with error code.
See "systemctl status docker.service" and "journalctl -xe" for details.
check
/etc/docker/daemon.json
sudo docker run --runtime=nvidia --rm nvidia/cuda:10.1-base nvidia-smi
sudo nvidia-docker run --rm nvidia/cuda:10.1-base nvidia-smi複製代碼
Thu Aug 29 00:11:32 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.00 Driver Version: 418.87.00 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro RTX 8000 Off | 00000000:02:00.0 Off | Off |
| 43% 67C P2 136W / 260W | 46629MiB / 48571MiB | 17% Default |
+-------------------------------+----------------------+----------------------+
| 1 Quadro RTX 8000 Off | 00000000:03:00.0 Off | Off |
| 34% 54C P0 74W / 260W | 0MiB / 48571MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Quadro RTX 8000 Off | 00000000:82:00.0 Off | Off |
| 34% 49C P0 73W / 260W | 0MiB / 48571MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Quadro RTX 8000 Off | 00000000:83:00.0 Off | Off |
| 33% 50C P0 73W / 260W | 0MiB / 48571MiB | 3% Default |
+-------------------------------+----------------------+----------------------+複製代碼
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
> add user to `docker` group, and no need to use `sudo docker xxx`複製代碼
sudo nvidia-docker run --rm nvidia/cuda:10.1-base nvidia-smi
sudo nvidia-docker -t -i --privileged nvidia/cuda bash複製代碼
sudo docker run -it --name kzl -v /home/kezunlin/workspace/:/home/kezunlin/workspace nvidia/cuda
複製代碼