scrapy-redis使用以及剖析

scrapy-redis是一個基於redis的scrapy組件,經過它能夠快速實現簡單分佈式爬蟲程序,該組件本質上提供了三大功能:html

  • scheduler - 調度器
  • dupefilter - URL去重規則(被調度器使用)
  • pipeline   - 數據持久化

scrapy-redis組件

1. URL去重python

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
定義去重規則(被調度器調用並應用)
 
     a. 內部會使用如下配置進行鏈接Redis
 
         # REDIS_HOST = 'localhost'                            # 主機名
         # REDIS_PORT = 6379                                   # 端口
         # REDIS_URL = 'redis://user:pass@hostname:9001'       # 鏈接URL(優先於以上配置)
         # REDIS_PARAMS  = {}                                  # Redis鏈接參數             默認:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
         # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定鏈接Redis的Python模塊  默認:redis.StrictRedis
         # REDIS_ENCODING = "utf-8"                            # redis編碼類型             默認:'utf-8'
     
     b. 去重規則經過redis的集合完成,集合的Key爲:
     
         key  =  defaults.DUPEFILTER_KEY  %  { 'timestamp' int (time.time())}
         默認配置:
             DUPEFILTER_KEY  =  'dupefilter:%(timestamp)s'
              
     c. 去重規則中將url轉換成惟一標示,而後在redis中檢查是否已經在集合中存在
     
         from  scrapy.utils  import  request
         from  scrapy.http  import  Request
         
         req  =  Request(url = 'http://www.cnblogs.com/wupeiqi.html' )
         result  =  request.request_fingerprint(req)
         print (result)  # 8ea4fd67887449313ccc12e5b6b92510cc53675c
         
         
         PS:
             -  URL參數位置不一樣時,計算結果一致;
             -  默認請求頭不在計算範圍,include_headers能夠設置指定請求頭
             示例:
                 from  scrapy.utils  import  request
                 from  scrapy.http  import  Request
                 
                 req  =  Request(url = 'http://www.baidu.com?name=8&id=1' ,callback = lambda  x: print (x),cookies = { 'k1' : 'vvvvv' })
                 result  =  request.request_fingerprint(req,include_headers = [ 'cookies' ,])
                 
                 print (result)
                 
                 req  =  Request(url = 'http://www.baidu.com?id=1&name=8' ,callback = lambda  x: print (x),cookies = { 'k1' : 666 })
                 
                 result  =  request.request_fingerprint(req,include_headers = [ 'cookies' ,])
                 
                 print (result)
         
"""
# Ensure all spiders share same duplicates filter through redis.
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"

2. 調度器redis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
"""
調度器,調度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)進行保存請求,而且使用RFPDupeFilter對URL去重
     
     a. 調度器
         SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'          # 默認使用優先級隊列(默認),其餘:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
         SCHEDULER_QUEUE_KEY = '%(spider)s:requests'                         # 調度器中請求存放在redis中的key
         SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"                  # 對保存到redis中的數據進行序列化,默認使用pickle
         SCHEDULER_PERSIST = True                                            # 是否在關閉時候保留原來的調度器和去重記錄,True=保留,False=清空
         SCHEDULER_FLUSH_ON_START = True                                     # 是否在開始以前清空 調度器和去重記錄,True=清空,False=不清空
         SCHEDULER_IDLE_BEFORE_CLOSE = 10                                    # 去調度器中獲取數據時,若是爲空,最多等待時間(最後沒數據,未獲取到)。
         SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter'                  # 去重規則,在redis中保存時對應的key
         SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類
 
 
"""
# Enables scheduling storing requests queue in redis.
SCHEDULER  =  "scrapy_redis.scheduler.Scheduler"
 
# Default requests serializer is pickle, but it can be changed to any module
# with loads and dumps functions. Note that pickle is not compatible between
# python versions.
# Caveat: In python 3.x, the serializer must return strings keys and support
# bytes as values. Because of this reason the json or msgpack module will not
# work by default. In python 2.x there is no such issue and you can use
# 'json' or 'msgpack' as serializers.
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"
 
# Don't cleanup redis queues, allows to pause/resume crawls.
# SCHEDULER_PERSIST = True
 
# Schedule requests using a priority queue. (default)
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'
 
# Alternative queues.
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue'
 
# Max idle time to prevent the spider from being closed when distributed crawling.
# This only works if queue class is SpiderQueue or SpiderStack,
# and may also block the same time when your spider start at the first time (because the queue is empty).
# SCHEDULER_IDLE_BEFORE_CLOSE = 10  

3. 數據持久化json

1
2
3
4
5
6
7
8
2.  定義持久化,爬蟲 yield  Item對象時執行RedisPipeline
     
     a. 將item持久化到redis時,指定key和序列化函數
     
         REDIS_ITEMS_KEY  =  '%(spider)s:items'
         REDIS_ITEMS_SERIALIZER  =  'json.dumps'
     
     b. 使用列表保存item數據

4. 起始URL相關cookie

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""
起始URL相關
 
     a. 獲取起始URL時,去集合中獲取仍是去列表中獲取?True,集合;False,列表
         REDIS_START_URLS_AS_SET = False    # 獲取起始URL時,若是爲True,則使用self.server.spop;若是爲False,則使用self.server.lpop
     b. 編寫爬蟲時,起始URL從redis的Key中獲取
         REDIS_START_URLS_KEY = '%(name)s:start_urls'
         
"""
# If True, it uses redis' ``spop`` operation. This could be useful if you
# want to avoid duplicates in your start urls list. In this cases, urls must
# be added via ``sadd`` command or you will get a type error from redis.
# REDIS_START_URLS_AS_SET = False
 
# Default start urls key for RedisSpider and RedisCrawlSpider.
# REDIS_START_URLS_KEY = '%(name)s:start_urls'

scrapy-redis示例

複製代碼
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#
#
# from scrapy_redis.scheduler import Scheduler
# from scrapy_redis.queue import PriorityQueue
# SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'          # 默認使用優先級隊列(默認),其餘:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
# SCHEDULER_QUEUE_KEY = '%(spider)s:requests'                         # 調度器中請求存放在redis中的key
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"                  # 對保存到redis中的數據進行序列化,默認使用pickle
# SCHEDULER_PERSIST = True                                            # 是否在關閉時候保留原來的調度器和去重記錄,True=保留,False=清空
# SCHEDULER_FLUSH_ON_START = False                                    # 是否在開始以前清空 調度器和去重記錄,True=清空,False=不清空
# SCHEDULER_IDLE_BEFORE_CLOSE = 10                                    # 去調度器中獲取數據時,若是爲空,最多等待時間(最後沒數據,未獲取到)。
# SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter'                  # 去重規則,在redis中保存時對應的key
# SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重規則對應處理的類
#
#
#
# REDIS_HOST = '10.211.55.13'                           # 主機名
# REDIS_PORT = 6379                                     # 端口
# # REDIS_URL = 'redis://user:pass@hostname:9001'       # 鏈接URL(優先於以上配置)
# # REDIS_PARAMS  = {}                                  # Redis鏈接參數             默認:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定鏈接Redis的Python模塊  默認:redis.StrictRedis
# REDIS_ENCODING = "utf-8"                              # redis編碼類型             默認:'utf-8'
複製代碼
複製代碼
import scrapy


class ChoutiSpider(scrapy.Spider):
    name = "chouti"
    allowed_domains = ["chouti.com"]
    start_urls = (
        'http://www.chouti.com/',
    )

    def parse(self, response):
        for i in range(0,10):
            yield
複製代碼

 


複製代碼
import scrapy


class ChoutiSpider(scrapy.Spider):
    name = "chouti"
    allowed_domains = ["chouti.com"]
    start_urls = (
        'http://www.chouti.com/',
    )

    def parse(self, response):
        for i in range(0,10):
            yield
複製代碼
相關文章
相關標籤/搜索