聊聊Guava的RateLimiter

本文主要研究一下Guava的RateLimiterhtml

RateLimiter

guava-26.0-jre-sources.jar!/com/google/common/util/concurrent/RateLimiter.javajava

@Beta
@GwtIncompatible
public abstract class RateLimiter {

    //......
 /**
   * Acquires the given number of permits from this {@code RateLimiter}, blocking until the request
   * can be granted. Tells the amount of time slept, if any.
   *
   * @param permits the number of permits to acquire
   * @return time spent sleeping to enforce rate, in seconds; 0.0 if not rate-limited
   * @throws IllegalArgumentException if the requested number of permits is negative or zero
   * @since 16.0 (present in 13.0 with {@code void} return type})
   */
  @CanIgnoreReturnValue
  public double acquire(int permits) {
    long microsToWait = reserve(permits);
    stopwatch.sleepMicrosUninterruptibly(microsToWait);
    return 1.0 * microsToWait / SECONDS.toMicros(1L);
  }

  /**
   * Reserves the given number of permits from this {@code RateLimiter} for future use, returning
   * the number of microseconds until the reservation can be consumed.
   *
   * @return time in microseconds to wait until the resource can be acquired, never negative
   */
  final long reserve(int permits) {
    checkPermits(permits);
    synchronized (mutex()) {
      return reserveAndGetWaitLength(permits, stopwatch.readMicros());
    }
  }

  private static void checkPermits(int permits) {
    checkArgument(permits > 0, "Requested permits (%s) must be positive", permits);
  }

  /**
   * Reserves next ticket and returns the wait time that the caller must wait for.
   *
   * @return the required wait time, never negative
   */
  final long reserveAndGetWaitLength(int permits, long nowMicros) {
    long momentAvailable = reserveEarliestAvailable(permits, nowMicros);
    return max(momentAvailable - nowMicros, 0);
  }

  public boolean tryAcquire(int permits, long timeout, TimeUnit unit) {
    long timeoutMicros = max(unit.toMicros(timeout), 0);
    checkPermits(permits);
    long microsToWait;
    synchronized (mutex()) {
      long nowMicros = stopwatch.readMicros();
      if (!canAcquire(nowMicros, timeoutMicros)) {
        return false;
      } else {
        microsToWait = reserveAndGetWaitLength(permits, nowMicros);
      }
    }
    stopwatch.sleepMicrosUninterruptibly(microsToWait);
    return true;
  }

  private boolean canAcquire(long nowMicros, long timeoutMicros) {
    return queryEarliestAvailable(nowMicros) - timeoutMicros <= nowMicros;
  }

  /**
   * Reserves next ticket and returns the wait time that the caller must wait for.
   *
   * @return the required wait time, never negative
   */
  final long reserveAndGetWaitLength(int permits, long nowMicros) {
    long momentAvailable = reserveEarliestAvailable(permits, nowMicros);
    return max(momentAvailable - nowMicros, 0);
  }

  /**
   * Returns the earliest time that permits are available (with one caveat).
   *
   * @return the time that permits are available, or, if permits are available immediately, an
   *     arbitrary past or present time
   */
  abstract long queryEarliestAvailable(long nowMicros);

  /**
   * Reserves the requested number of permits and returns the time that those permits can be used
   * (with one caveat).
   *
   * @return the time that the permits may be used, or, if the permits may be used immediately, an
   *     arbitrary past or present time
   */
  abstract long reserveEarliestAvailable(int permits, long nowMicros);

  //......
}
  • 這裏主要看acquire以及tryAcquire方法
  • acquire主要依賴reserve方法,先調用reserveAndGetWaitLength,最後是調用reserveEarliestAvailable方法
  • tryAcquire也會調用reserveAndGetWaitLength,最後也是調用reserveEarliestAvailable方法
  • reserveEarliestAvailable是抽象方法,由子類去實現

SmoothRateLimiter

guava-26.0-jre-sources.jar!/com/google/common/util/concurrent/SmoothRateLimiter.javagit

@GwtIncompatible
abstract class SmoothRateLimiter extends RateLimiter {
  //......
  @Override
  final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
    resync(nowMicros);
    long returnValue = nextFreeTicketMicros;
    double storedPermitsToSpend = min(requiredPermits, this.storedPermits);
    double freshPermits = requiredPermits - storedPermitsToSpend;
    long waitMicros =
        storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)
            + (long) (freshPermits * stableIntervalMicros);

    this.nextFreeTicketMicros = LongMath.saturatedAdd(nextFreeTicketMicros, waitMicros);
    this.storedPermits -= storedPermitsToSpend;
    return returnValue;
  }

  /** Updates {@code storedPermits} and {@code nextFreeTicketMicros} based on the current time. */
  void resync(long nowMicros) {
    // if nextFreeTicket is in the past, resync to now
    if (nowMicros > nextFreeTicketMicros) {
      double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();
      storedPermits = min(maxPermits, storedPermits + newPermits);
      nextFreeTicketMicros = nowMicros;
    }
  }

  /**
   * Translates a specified portion of our currently stored permits which we want to spend/acquire,
   * into a throttling time. Conceptually, this evaluates the integral of the underlying function we
   * use, for the range of [(storedPermits - permitsToTake), storedPermits].
   *
   * <p>This always holds: {@code 0 <= permitsToTake <= storedPermits}
   */
  abstract long storedPermitsToWaitTime(double storedPermits, double permitsToTake);

  /**
   * Returns the number of microseconds during cool down that we have to wait to get a new permit.
   */
  abstract double coolDownIntervalMicros();

  //......
}
  • SmoothRateLimiter是RateLimiter的抽象子類,是平滑限流實現類的抽象父類
  • 這裏首先調用resync方法(用於處理根據速率添加token的邏輯),而後再去計算permits扣減以及等待時間的計算
  • 這裏調用了兩個抽象方法,分別是coolDownIntervalMicros以及storedPermitsToWaitTime

SmoothRateLimiter的兩個子類

SmoothRateLimiter有兩個內部靜態子類,分別是SmoothBursty以及SmoothWarmingUpgithub

SmoothBursty

/**
   * This implements a "bursty" RateLimiter, where storedPermits are translated to zero throttling.
   * The maximum number of permits that can be saved (when the RateLimiter is unused) is defined in
   * terms of time, in this sense: if a RateLimiter is 2qps, and this time is specified as 10
   * seconds, we can save up to 2 * 10 = 20 permits.
   */
  static final class SmoothBursty extends SmoothRateLimiter {
    /** The work (permits) of how many seconds can be saved up if this RateLimiter is unused? */
    final double maxBurstSeconds;

    SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) {
      super(stopwatch);
      this.maxBurstSeconds = maxBurstSeconds;
    }

    @Override
    void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
      double oldMaxPermits = this.maxPermits;
      maxPermits = maxBurstSeconds * permitsPerSecond;
      if (oldMaxPermits == Double.POSITIVE_INFINITY) {
        // if we don't special-case this, we would get storedPermits == NaN, below
        storedPermits = maxPermits;
      } else {
        storedPermits =
            (oldMaxPermits == 0.0)
                ? 0.0 // initial state
                : storedPermits * maxPermits / oldMaxPermits;
      }
    }

    @Override
    long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
      return 0L;
    }

    @Override
    double coolDownIntervalMicros() {
      return stableIntervalMicros;
    }
  }
  • SmoothBursty是一個zero throttling的"bursty" RateLimiter
  • coolDownIntervalMicros返回的是stableIntervalMicros,而storedPermitsToWaitTime返回的爲0

SmoothWarmingUp

static final class SmoothWarmingUp extends SmoothRateLimiter {
    private final long warmupPeriodMicros;
    /**
     * The slope of the line from the stable interval (when permits == 0), to the cold interval
     * (when permits == maxPermits)
     */
    private double slope;

    private double thresholdPermits;
    private double coldFactor;

    SmoothWarmingUp(
        SleepingStopwatch stopwatch, long warmupPeriod, TimeUnit timeUnit, double coldFactor) {
      super(stopwatch);
      this.warmupPeriodMicros = timeUnit.toMicros(warmupPeriod);
      this.coldFactor = coldFactor;
    }

    @Override
    void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
      double oldMaxPermits = maxPermits;
      double coldIntervalMicros = stableIntervalMicros * coldFactor;
      thresholdPermits = 0.5 * warmupPeriodMicros / stableIntervalMicros;
      maxPermits =
          thresholdPermits + 2.0 * warmupPeriodMicros / (stableIntervalMicros + coldIntervalMicros);
      slope = (coldIntervalMicros - stableIntervalMicros) / (maxPermits - thresholdPermits);
      if (oldMaxPermits == Double.POSITIVE_INFINITY) {
        // if we don't special-case this, we would get storedPermits == NaN, below
        storedPermits = 0.0;
      } else {
        storedPermits =
            (oldMaxPermits == 0.0)
                ? maxPermits // initial state is cold
                : storedPermits * maxPermits / oldMaxPermits;
      }
    }

    @Override
    long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
      double availablePermitsAboveThreshold = storedPermits - thresholdPermits;
      long micros = 0;
      // measuring the integral on the right part of the function (the climbing line)
      if (availablePermitsAboveThreshold > 0.0) {
        double permitsAboveThresholdToTake = min(availablePermitsAboveThreshold, permitsToTake);
        // TODO(cpovirk): Figure out a good name for this variable.
        double length =
            permitsToTime(availablePermitsAboveThreshold)
                + permitsToTime(availablePermitsAboveThreshold - permitsAboveThresholdToTake);
        micros = (long) (permitsAboveThresholdToTake * length / 2.0);
        permitsToTake -= permitsAboveThresholdToTake;
      }
      // measuring the integral on the left part of the function (the horizontal line)
      micros += (long) (stableIntervalMicros * permitsToTake);
      return micros;
    }

    private double permitsToTime(double permits) {
      return stableIntervalMicros + permits * slope;
    }

    @Override
    double coolDownIntervalMicros() {
      return warmupPeriodMicros / maxPermits;
    }
  }
  • coolDownIntervalMicros返回的是warmupPeriodMicros / maxPermits,而storedPermitsToWaitTime的計算相對複雜一些
  • SmoothBursty是基於token bucket算法,容許必定量的bursty流量,可是有些場景須要bursty流量更平滑些,這就須要使用SmoothWarmingUp
  • SmoothWarmingUp有一個warmup period,爲thresholdPermits到maxPermits的這段範圍
* <pre>
   *          ^ throttling
   *          |
   *    cold  +                  /
   * interval |                 /.
   *          |                / .
   *          |               /  .   ← "warmup period" is the area of the trapezoid between
   *          |              /   .     thresholdPermits and maxPermits
   *          |             /    .
   *          |            /     .
   *          |           /      .
   *   stable +----------/  WARM .
   * interval |          .   UP  .
   *          |          . PERIOD.
   *          |          .       .
   *        0 +----------+-------+--------------→ storedPermits
   *          0 thresholdPermits maxPermits
   * </pre>

主要涉及以下幾個公式算法

coldInterval = coldFactor * stableInterval.
thresholdPermits = 0.5 * warmupPeriod / stableInterval
maxPermits = thresholdPermits + 2 * warmupPeriod / (stableInterval + coldInterval)
  • coldFactor默認是3
  • stableInterval代碼以毫秒計算,即stableIntervalMicros = SECONDS.toMicros(1L) / permitsPerSecond

小結

  • Guava的RateLimiter(SmoothRateLimiter)基於token bucket算法實現,具體有兩個實現類,分別是SmoothBursty以及SmoothWarmingUp
  • SmoothBursty初始化的storedPermits爲0,能夠支持burst到maxPermits
  • SmoothWarmingUp初始化的storedPermits爲maxPermits(thresholdPermits + 2.0 * warmupPeriodMicros / (stableIntervalMicros + coldIntervalMicros)),也支持burst,可是整體相對平滑

doc

相關文章
相關標籤/搜索