打開官方下載連接 http://hadoop.apache.org/releases.html#Download ,選擇2.2.0版本的發佈包下載後解壓到指定路徑下: html
$ tar -zxf hadoop-2.2.0.tar.gz -C /usr/local/ $ cd /usr/local $ ln -s hadoop-2.2.0 hadoop
那麼本文中HADOOP_HOME = /usr/local/hadoop/. java
三、配置hadoop用戶的環境變量 vi ~/.bash_profile ,添加以下內容: node
# set java environment export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64 export CLASSPATH=.:$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin # Michael@micmiu.com # Hadoop export HADOOP_PREFIX="/usr/local/hadoop" export PATH=$PATH:$HADOOP_PREFIX/bin:$HADOOP_PREFIX/sbin export HADOOP_COMMON_HOME=${HADOOP_PREFIX} export HADOOP_HDFS_HOME=${HADOOP_PREFIX} export HADOOP_MAPRED_HOME=${HADOOP_PREFIX} export HADOOP_YARN_HOME=${HADOOP_PREFIX}
四、編輯 <HADOOP_HOME>/etc/hadoop/hadoop-env.sh apache
修改JAVA_HOME的配置: 瀏覽器
export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64
五、編輯 <HADOOP_HOME>/etc/hadoop/yarn-env.sh bash
修改JAVA_HOME的配置: jvm
export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64
六、編輯 <HADOOP_HOME>/etc/hadoop/core-site.xml oop
在<configuration>節點下添加或者更新下面的配置信息: 測試
<!-- 新變量f:s.defaultFS 代替舊的:fs.default.name |micmiu.com--> <property> <name>fs.defaultFS</name> <value>hdfs://Master.Hadoop:9000</value> <description>The name of the default file system.</description> </property> <property> <name>hadoop.tmp.dir</name> <!-- 注意建立相關的目錄結構 --> <value>/usr/local/hadoop/temp</value> <description>A base for other temporary directories.</description> </property>
七、編輯<HADOOP_HOME>/etc/hadoop/hdfs-site.xml spa
在<configuration>節點下添加或者更新下面的配置信息:
<property> <name>dfs.replication</name> <!-- 值須要與實際的DataNode節點數要一致,本文爲3 --> <value>3</value> </property> <property> <name>dfs.namenode.name.dir</name> <!-- 注意建立相關的目錄結構 --> <value>file:/usr/local/hadoop/dfs/name</value> <final>true</final> </property> <property> <name>dfs.datanode.data.dir</name> <!-- 注意建立相關的目錄結構 --> <value>file:/usr/local/hadoop/dfs/data</value> </property>
八、編輯<HADOOP_HOME>/etc/hadoop/yarn-site.xml
在<configuration>節點下添加或者更新下面的配置信息:
<!-- micmiu.com --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <!-- resourcemanager hostname或ip地址--> <property> <name>yarn.resourcemanager.hostname</name> <value>Master.Hadoop</value> </property>
九、編輯 <HADOOP_HOME>/etc/hadoop/mapred-site.xml
默認沒有mapred-site.xml文件,copy mapred-site.xml.template 一份爲 mapred-site.xml便可
在<configuration>節點下添加或者更新下面的配置信息:
<!-- micmiu.com --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> <final>true</final> </property>
[三]、啓動和測試
一、啓動Hadoop
1.一、第一次啓動須要在Master.Hadoop 執行format hdfs namenode -format :
[hadoop@Master ~]$ hdfs namenode -format 14/01/22 15:43:10 INFO namenode.NameNode: STARTUP_MSG: /************************************************************ STARTUP_MSG: Starting NameNode STARTUP_MSG: host = Master.Hadoop/192.168.6.77 STARTUP_MSG: args = [-format] STARTUP_MSG: version = 2.2.0 STARTUP_MSG: classpath = ........................................ ............micmiu.com............. ........................................ STARTUP_MSG: java = 1.6.0_20 ************************************************************/ 14/01/22 15:43:10 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT] Formatting using clusterid: CID-645f2ed2-6f02-4c24-8cbc-82b09eca963d 14/01/22 15:43:11 INFO namenode.HostFileManager: read includes: HostSet( ) 14/01/22 15:43:11 INFO namenode.HostFileManager: read excludes: HostSet( ) 14/01/22 15:43:11 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000 14/01/22 15:43:11 INFO util.GSet: Computing capacity for map BlocksMap 14/01/22 15:43:11 INFO util.GSet: VM type = 64-bit 14/01/22 15:43:11 INFO util.GSet: 2.0% max memory = 888.9 MB 14/01/22 15:43:11 INFO util.GSet: capacity = 2^21 = 2097152 entries 14/01/22 15:43:11 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false 14/01/22 15:43:11 INFO blockmanagement.BlockManager: defaultReplication = 3 14/01/22 15:43:11 INFO blockmanagement.BlockManager: maxReplication = 512 14/01/22 15:43:11 INFO blockmanagement.BlockManager: minReplication = 1 14/01/22 15:43:11 INFO blockmanagement.BlockManager: maxReplicationStreams = 2 14/01/22 15:43:11 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks = false 14/01/22 15:43:11 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000 14/01/22 15:43:11 INFO blockmanagement.BlockManager: encryptDataTransfer = false 14/01/22 15:43:11 INFO namenode.FSNamesystem: fsOwner = hadoop (auth:SIMPLE) 14/01/22 15:43:11 INFO namenode.FSNamesystem: supergroup = supergroup 14/01/22 15:43:11 INFO namenode.FSNamesystem: isPermissionEnabled = true 14/01/22 15:43:11 INFO namenode.FSNamesystem: HA Enabled: false 14/01/22 15:43:11 INFO namenode.FSNamesystem: Append Enabled: true 14/01/22 15:43:11 INFO util.GSet: Computing capacity for map INodeMap 14/01/22 15:43:11 INFO util.GSet: VM type = 64-bit 14/01/22 15:43:11 INFO util.GSet: 1.0% max memory = 888.9 MB 14/01/22 15:43:11 INFO util.GSet: capacity = 2^20 = 1048576 entries 14/01/22 15:43:11 INFO namenode.NameNode: Caching file names occuring more than 10 times 14/01/22 15:43:11 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033 14/01/22 15:43:11 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0 14/01/22 15:43:11 INFO namenode.FSNamesystem: dfs.namenode.safemode.extension = 30000 14/01/22 15:43:11 INFO namenode.FSNamesystem: Retry cache on namenode is enabled 14/01/22 15:43:11 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis 14/01/22 15:43:11 INFO util.GSet: Computing capacity for map Namenode Retry Cache 14/01/22 15:43:11 INFO util.GSet: VM type = 64-bit 14/01/22 15:43:11 INFO util.GSet: 0.029999999329447746% max memory = 888.9 MB 14/01/22 15:43:11 INFO util.GSet: capacity = 2^15 = 32768 entries 14/01/22 15:43:11 INFO common.Storage: Storage directory /usr/local/hadoop/dfs/name has been successfully formatted. 14/01/22 15:43:11 INFO namenode.FSImage: Saving image file /usr/local/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression 14/01/22 15:43:11 INFO namenode.FSImage: Image file /usr/local/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 198 bytes saved in 0 seconds. 14/01/22 15:43:11 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0 14/01/22 15:43:11 INFO util.ExitUtil: Exiting with status 0 14/01/22 15:43:11 INFO namenode.NameNode: SHUTDOWN_MSG: /************************************************************ SHUTDOWN_MSG: Shutting down NameNode at Master.Hadoop/192.168.6.77 ************************************************************/
1.二、在Master.Hadoop執行 start-dfs.sh :
[hadoop@Master ~]$ start-dfs.sh Starting namenodes on [Master.Hadoop] Master.Hadoop: starting namenode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-namenode-Master.Hadoop.out Slave7.Hadoop: starting datanode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-datanode-Slave7.Hadoop.out Slave5.Hadoop: starting datanode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-datanode-Slave5.Hadoop.out Slave6.Hadoop: starting datanode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-datanode-Slave6.Hadoop.out Starting secondary namenodes [0.0.0.0] 0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-secondarynamenode-Master.Hadoop.out
在Master.Hadoop 驗證啓動進程:
[hadoop@Master ~]$ jps 7695 Jps 7589 SecondaryNameNode 7403 NameNode
在SlaveX.Hadop 驗證啓動進程以下:
[hadoop@Slave5 ~]$ jps 8724 DataNode 8815 Jps
1.三、在Master.Hadoop 執行 start-yarn.sh :
[hadoop@Master ~]$ start-yarn.sh starting yarn daemons starting resourcemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-resourcemanager-Master.Hadoop.out Slave7.Hadoop: starting nodemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-nodemanager-Slave7.Hadoop.out Slave5.Hadoop: starting nodemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-nodemanager-Slave5.Hadoop.out Slave6.Hadoop: starting nodemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-nodemanager-Slave6.Hadoop.out
在Master.Hadoop 驗證啓動進程:
[hadoop@Master ~]$ jps 8071 Jps 7589 SecondaryNameNode 7821 ResourceManager 7403 NameNode
在SlaveX.Hadop 驗證啓動進程以下:
[hadoop@Slave5 ~]$ jps 9013 Jps 8724 DataNode 8882 NodeManager
二、演示
2.一、演示hdfs 一些經常使用命令,爲wordcount演示作準備:
[hadoop@Master ~]$ hdfs dfs -ls / [hadoop@Master ~]$ hdfs dfs -mkdir /user [hadoop@Master ~]$ hdfs dfs -mkdir -p /user/micmiu/wordcount/in [hadoop@Master ~]$ hdfs dfs -ls /user/micmiu/wordcount Found 1 items drwxr-xr-x - hadoop supergroup 0 2014-01-22 16:01 /user/micmiu/wordcount/in
2.二、本地建立三個文件 micmiu-01.txt、micmiu-03.txt、micmiu-03.txt, 分別寫入以下內容:
micmiu-01.txt:
Hi Michael welcome to Hadoop more see micmiu.com
micmiu-02.txt:
Hi Michael welcome to BigData more see micmiu.com
micmiu-03.txt:
Hi Michael welcome to Spark more see micmiu.com
把 micmiu 打頭的三個文件上傳到hdfs:
[hadoop@Master ~]$ hdfs dfs -put micmiu*.txt /user/micmiu/wordcount/in [hadoop@Master ~]$ hdfs dfs -ls /user/micmiu/wordcount/in Found 3 items -rw-r--r-- 3 hadoop supergroup 50 2014-01-22 16:06 /user/micmiu/wordcount/in/micmiu-01.txt -rw-r--r-- 3 hadoop supergroup 50 2014-01-22 16:06 /user/micmiu/wordcount/in/micmiu-02.txt -rw-r--r-- 3 hadoop supergroup 49 2014-01-22 16:06 /user/micmiu/wordcount/in/micmiu-03.txt
2.三、而後cd 切換到Hadoop的根目錄下執行:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /user/micmiu/wordcount/in /user/micmiu/wordcount/out
ps: hdfs 中 /user/micmiu/wordcount/out 目錄不能存在 不然運行報錯。
看到相似以下的日誌信息:
[hadoop@Master hadoop]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /user/micmiu/wordcount/in /user/micmiu/wordcount/out 14/01/22 16:36:28 INFO client.RMProxy: Connecting to ResourceManager at Master.Hadoop/192.168.6.77:8032 14/01/22 16:36:29 INFO input.FileInputFormat: Total input paths to process : 3 14/01/22 16:36:29 INFO mapreduce.JobSubmitter: number of splits:3 ............................ .....micmiu.com........ ............................ File System Counters FILE: Number of bytes read=297 FILE: Number of bytes written=317359 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=536 HDFS: Number of bytes written=83 HDFS: Number of read operations=12 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=3 Launched reduce tasks=1 Data-local map tasks=3 Total time spent by all maps in occupied slots (ms)=55742 Total time spent by all reduces in occupied slots (ms)=3933 Map-Reduce Framework Map input records=6 Map output records=24 Map output bytes=243 Map output materialized bytes=309 Input split bytes=387 Combine input records=24 Combine output records=24 Reduce input groups=10 Reduce shuffle bytes=309 Reduce input records=24 Reduce output records=10 Spilled Records=48 Shuffled Maps =3 Failed Shuffles=0 Merged Map outputs=3 GC time elapsed (ms)=1069 CPU time spent (ms)=12390 Physical memory (bytes) snapshot=846753792 Virtual memory (bytes) snapshot=5155561472 Total committed heap usage (bytes)=499580928 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=149 File Output Format Counters Bytes Written=83
到此 wordcount的job已經執行完成,執行以下命令能夠查看剛纔job的執行結果:
[hadoop@Master hadoop]$ hdfs dfs -ls /user/micmiu/wordcount/out Found 2 items -rw-r--r-- 3 hadoop supergroup 0 2014-01-22 16:38 /user/micmiu/wordcount/out/_SUCCESS -rw-r--r-- 3 hadoop supergroup 83 2014-01-22 16:38 /user/micmiu/wordcount/out/part-r-00000 [hadoop@Master hadoop]$ hdfs dfs -cat /user/micmiu/wordcount/out/part-r-00000 BigData 1 Hadoop 1 Hi 3 Michael 3 Spark 1 micmiu.com 3 more 3 see 3 to 3 welcome 3
打開瀏覽器輸入:http://192.168.6.77(Master.Hadoop):8088 可查看相關的應用運行狀況。