java內存泄漏與內存溢出

內存溢出 out of memory,是指程序在申請內存時,沒有足夠的內存空間供其使用,出現out of memory;java

內存泄露 memory leak,是指程序在申請內存後,沒法釋放已申請的內存空間,一次內存泄露危害能夠忽略,但內存泄露堆積後果很嚴重,不管多少內存,早晚會被佔光。算法

memory leak會最終會致使out of memory!數據庫

   以發生的方式來分類,內存泄漏能夠分爲4類: 

1. 常發性內存泄漏。發生內存泄漏的代碼會被屢次執行到,每次被執行的時候都會致使一塊內存泄漏。 
2. 偶發性內存泄漏。發生內存泄漏的代碼只有在某些特定環境或操做過程下才會發生。常發性和偶發性是相對的。對於特定的環境,偶發性的也許就變成了常發性的。因此測試環境和測試方法對檢測內存泄漏相當重要。 
3. 一次性內存泄漏。發生內存泄漏的代碼只會被執行一次,或者因爲算法上的缺陷,致使總會有一塊僅且一塊內存發生泄漏。好比,在類的構造函數中分配內存,在析構函數中卻沒有釋放該內存,因此內存泄漏只會發生一次。 
4. 隱式內存泄漏。程序在運行過程當中不停的分配內存,可是直到結束的時候才釋放內存。嚴格的說這裏並無發生內存泄漏,由於最終程序釋放了全部申請的內存。可是對於一個服務器程序,須要運行幾天,幾周甚至幾個月,不及時釋放內存也可能致使最終耗盡系統的全部內存。因此,咱們稱這類內存泄漏爲隱式內存泄漏。 

從用戶使用程序的角度來看,內存泄漏自己不會產生什麼危害,做爲通常的用戶,根本感受不到內存泄漏的存在。真正有危害的是內存泄漏的堆積,這會最終消耗盡系統全部的內存。從這個角度來講,一次性內存泄漏並無什麼危害,由於它不會堆積,而隱式內存泄漏危害性則很是大,由於較之於常發性和偶發性內存泄漏它更難被檢測到 編程

 

1、Java內存回收機制
不論哪一種語言的內存分配方式,都須要返回所分配內存的真實地址,也就是返回一個指針到內存塊的首地址。Java中對象是採用new或者反射的方法建立的,這些對象的建立都是在堆(Heap)中分配的,全部對象的回收都是由Java虛擬機經過垃圾回收機制完成的。GC爲了可以正確釋放對象,會監控每一個對象的運行情況,對他們的申請、引用、被引用、賦值等情況進行監控,Java會使用有向圖的方法進行管理內存,實時監控對象是否能夠達到,若是不可到達,則就將其回收,服務器

2、Java內存泄露引發緣由
內存泄露是指無用對象(再也不使用的對象)持續佔有內存或無用對象的內存得不到及時釋放,從而形成的內存空間的浪費稱爲內存泄露。內存泄露有時不嚴重且不易察覺,這樣開發者就不知道存在內存泄露,但有時也會很嚴重,會提示你Out of memory。網絡

 

那麼,Java內存泄露根本緣由是什麼呢?長生命週期的對象持有短生命週期對象的引用就極可能發生內存泄露,儘管短生命週期對象已經再也不須要,可是由於長生命週期對象持有它的引用而致使不能被回收,這就是java中內存泄露的發生場景。具體主要有以下幾大類:
一、靜態集合類引發內存泄露:
像HashMap、Vector等的使用最容易出現內存泄露,這些靜態變量的生命週期和應用程序一致,他們所引用的全部的對象Object也不能被釋放,由於他們也將一直被Vector等引用着。jvm

Static Vector v = new Vector(10);
for (int i = 1; i<100; i++)
{
Object o = new Object();
v.add(o);
o = null;
}//

在這個例子中,循環申請Object 對象,並將所申請的對象放入一個Vector 中,若是僅僅釋放引用自己(o=null),那麼Vector 仍然引用該對象,因此這個對象對GC 來講是不可回收的。所以,若是對象加入到Vector 後,還必須從Vector 中刪除,最簡單的方法就是將Vector對象設置爲null。socket

二、當集合裏面的對象屬性被修改後,再調用remove()方法時不起做用。函數

public static void main(String[] args)
{
Set<Person> set = new HashSet<Person>();
Person p1 = new Person("唐僧","pwd1",25);
Person p2 = new Person("孫悟空","pwd2",26);
Person p3 = new Person("豬八戒","pwd3",27);
set.add(p1);
set.add(p2);
set.add(p3);
System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:3 個元素!
p3.setAge(2); //修改p3的年齡,此時p3元素對應的hashcode值發生改變

set.remove(p3); //此時remove不掉,形成內存泄漏

set.add(p3); //從新添加,竟然添加成功
System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:4 個元素!
for (Person person : set)
{
System.out.println(person);
}
}

三、監聽器
在java 編程中,咱們都須要和監聽器打交道,一般一個應用當中會用到不少監聽器,咱們會調用一個控件的諸如addXXXListener()等方法來增長監聽器,但每每在釋放對象的時候卻沒有記住去刪除這些監聽器,從而增長了內存泄漏的機會。測試

四、各類鏈接
好比數據庫鏈接(dataSourse.getConnection()),網絡鏈接(socket)和io鏈接,除非其顯式的調用了其close()方法將其鏈接關閉,不然是不會自動被GC 回收的。對於Resultset 和Statement 對象能夠不進行顯式回收,但Connection 必定要顯式回收,由於Connection 在任什麼時候候都沒法自動回收,而Connection一旦回收,Resultset 和Statement 對象就會當即爲NULL。可是若是使用鏈接池,狀況就不同了,除了要顯式地關閉鏈接,還必須顯式地關閉Resultset Statement 對象(關閉其中一個,另一個也會關閉),不然就會形成大量的Statement 對象沒法釋放,從而引發內存泄漏。這種狀況下通常都會在try裏面去的鏈接,在finally裏面釋放鏈接。

六、單例模式

若是單例對象持有外部對象的引用,那麼這個外部對象將不能被jvm正常回收,致使內存泄露。

若是單例對象持有外部對象的引用,那麼這個外部對象將不能被jvm正常回收,致使內存泄露

不正確使用單例模式是引發內存泄露的一個常見問題,單例對象在被初始化後將在JVM的整個生命週期中存在(以靜態變量的方式),若是單例對象持有外部對象的引用,那麼這個外部對象將不能被jvm正常回收,致使內存泄露,考慮下面的例子:

class A{
public A(){
B.getInstance().setA(this);
}
....
}
//B類採用單例模式
class B{
private A a;
private static B instance=new B();
public B(){}
public static B getInstance(){
return instance;
}
public void setA(A a){
this.a=a;
}
//getter...
}

顯然B採用singleton模式,它持有一個A對象的引用,而這個A類的對象將不能被回收。想象下若是A是個比較複雜的對象或者集合類型會發生什麼狀況

相關文章
相關標籤/搜索