本文轉自Rancher Labsnode
在過去的幾年裏,Kubernetes的採用量增加了數倍。很明顯,Kubernetes是容器編排的不二選擇。與此同時,Prometheus也被認爲是監控容器化和非容器化工做負載的絕佳選擇。監控是任何基礎設施的一個重要關注點,咱們應該確保咱們的監控設置具備高可用性和高可擴展性,以知足不斷增加的基礎設施的需求,特別是在採用Kubernetes的狀況下。nginx
所以,今天咱們將部署一個集羣化的Prometheus設置,它不只可以彈性應對節點故障,還能保證合適的數據存檔,供之後參考。咱們的設置還具備很強的可擴展性,以致於咱們能夠在同一個監控保護傘下跨越多個Kubernetes集羣。git
大部分的Prometheus部署都是使用持久卷的pod,而Prometheus則是使用聯邦機制進行擴展。可是並非全部的數據均可以使用聯邦機制進行聚合,在這裏,當你增長額外的服務器時,你每每須要一個機制來管理Prometheus配置。github
Thanos旨在解決上述問題。在Thanos的幫助下,咱們不只能夠對Prometheus的實例進行多重複制,並在它們之間進行數據去重,還能夠將數據歸檔到GCS或S3等長期存儲中。web
圖片來源: https://thanos.io/quick-tutorial.md/shell
Thanos由如下組件構成:數據庫
Thanos sidecar:這是運行在Prometheus上的主要組件。它讀取和歸檔對象存儲上的數據。此外,它還管理着Prometheus的配置和生命週期。爲了區分每一個Prometheus實例,sidecar組件將外部標籤注入到Prometheus配置中。該組件可以在 Prometheus 服務器的 PromQL 接口上運行查詢。Sidecar組件還能監聽Thanos gRPC協議,並在gRPC和REST之間翻譯查詢。json
Thanos 存儲:該組件在對象storage bucket中的歷史數據之上實現了Store API,它主要做爲API網關,所以不須要大量的本地磁盤空間。它在啓動時加入一個Thanos集羣,並公佈它能夠訪問的數據。它在本地磁盤上保存了少許關於全部遠程區塊的信息,並使其與 bucket 保持同步。一般狀況下,在從新啓動時能夠安全地刪除此數據,但會增長啓動時間。api
Thanos查詢:查詢組件在HTTP上監聽並將查詢翻譯成Thanos gRPC格式。它從不一樣的源頭彙總查詢結果,並能從Sidecar和Store讀取數據。在HA設置中,它甚至會對查詢結果進行重複數據刪除。安全
Prometheus是有狀態的,不容許複製其數據庫。這意味着經過運行多個Prometheus副原本提升高可用性並不易於使用。簡單的負載均衡是行不通的,好比在發生某些崩潰以後,一個副本可能會啓動,可是查詢這樣的副本會致使它在關閉期間出現一個小的缺口(gap)。你有第二個副本可能正在啓動,但它可能在另外一個時刻(如滾動重啓)關閉,所以在這些副本上面的負載均衡將沒法正常工做。
Thanos Querier則從兩個副本中提取數據,並對這些信號進行重複數據刪除,從而爲Querier使用者填補了缺口(gap)。
Thanos Compact組件將Prometheus 2.0存儲引擎的壓實程序應用於對象存儲中的塊數據存儲。它一般不是語義上的併發安全,必須針對bucket 進行單例部署。它還負責數據的下采樣——40小時後執行5m下采樣,10天后執行1h下采樣。
Thanos Ruler基本上和Prometheus的規則具備相同做用,惟一區別是它能夠與Thanos組件進行通訊。
要徹底理解這個教程,須要準備如下東西:
對Kubernetes和使用kubectl有必定的瞭解。
運行中的Kubernetes集羣至少有3個節點(在本demo中,使用GKE集羣)
實現Ingress Controller和Ingress對象(在本demo中使用Nginx Ingress Controller)。雖然這不是強制性的,但爲了減小建立外部端點的數量,強烈建議使用。
建立用於Thanos組件訪問對象存儲的憑證(在本例中爲GCS bucket)。
建立2個GCS bucket,並將其命名爲Prometheus-long-term和thanos-ruler。
建立一個服務帳戶,角色爲Storage Object Admin。
下載密鑰文件做爲json證書,並命名爲thanos-gcs-credentials.json。
使用憑證建立Kubernetes sercret
kubectl create secret generic thanos-gcs-credentials --from-file=thanos-gcs-credentials.json
部署Prometheus服務帳戶、Clusterroler
和Clusterrolebinding
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: v1 kind: ServiceAccount metadata: name: monitoring namespace: monitoring --- apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRole metadata: name: monitoring namespace: monitoring rules: - apiGroups: [""] resources: - nodes - nodes/proxy - services - endpoints - pods verbs: ["get", "list", "watch"] - apiGroups: [""] resources: - configmaps verbs: ["get"] - nonResourceURLs: ["/metrics"] verbs: ["get"] --- apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: monitoring subjects: - kind: ServiceAccount name: monitoring namespace: monitoring roleRef: kind: ClusterRole Name: monitoring apiGroup: rbac.authorization.k8s.io ---
以上manifest建立了Prometheus所需的監控命名空間以及服務帳戶、clusterrole
以及clusterrolebinding
。
apiVersion: v1 kind: ConfigMap metadata: name: prometheus-server-conf labels: name: prometheus-server-conf namespace: monitoring data: prometheus.yaml.tmpl: |- global: scrape_interval: 5s evaluation_interval: 5s external_labels: cluster: prometheus-ha # Each Prometheus has to have unique labels. replica: $(POD_NAME) rule_files: - /etc/prometheus/rules/*rules.yaml alerting: # We want our alerts to be deduplicated # from different replicas. alert_relabel_configs: - regex: replica action: labeldrop alertmanagers: - scheme: http path_prefix: / static_configs: - targets: ['alertmanager:9093'] scrape_configs: - job_name: kubernetes-nodes-cadvisor scrape_interval: 10s scrape_timeout: 10s scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token kubernetes_sd_configs: - role: node relabel_configs: - action: labelmap regex: __meta_kubernetes_node_label_(.+) # Only for Kubernetes ^1.7.3. # See: https://github.com/prometheus/prometheus/issues/2916 - target_label: __address__ replacement: kubernetes.default.svc:443 - source_labels: [__meta_kubernetes_node_name] regex: (.+) target_label: __metrics_path__ replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor metric_relabel_configs: - action: replace source_labels: [id] regex: '^/machine\.slice/machine-rkt\\x2d([^\\]+)\\.+/([^/]+)\.service$' target_label: rkt_container_name replacement: '${2}-${1}' - action: replace source_labels: [id] regex: '^/system\.slice/(.+)\.service$' target_label: systemd_service_name replacement: '${1}' - job_name: 'kubernetes-pods' kubernetes_sd_configs: - role: pod relabel_configs: - action: labelmap regex: __meta_kubernetes_pod_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_pod_name] action: replace target_label: kubernetes_pod_name - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_pod_prometheus_io_port] action: replace target_label: __address__ regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 - job_name: 'kubernetes-apiservers' kubernetes_sd_configs: - role: endpoints scheme: https tls_config: ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token relabel_configs: - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name] action: keep regex: default;kubernetes;https - job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs: - role: endpoints relabel_configs: - action: labelmap regex: __meta_kubernetes_service_label_(.+) - source_labels: [__meta_kubernetes_namespace] action: replace target_label: kubernetes_namespace - source_labels: [__meta_kubernetes_service_name] action: replace target_label: kubernetes_name - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape] action: keep regex: true - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme] action: replace target_label: __scheme__ regex: (https?) - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path] action: replace target_label: __metrics_path__ regex: (.+) - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port] action: replace target_label: __address__ regex: (.+)(?::\d+);(\d+) replacement: $1:$2
上述Configmap建立了Prometheus配置文件模板。這個配置文件模板將被Thanos sidecar組件讀取,它將生成實際的配置文件,而這個配置文件又將被運行在同一個pod中的Prometheus容器所消耗。在配置文件中添加external_labels部分是極其重要的,這樣Querier就能夠根據這個來重複刪除數據。
這將建立咱們的告警規則,這些規則將被轉發到alertmanager,以便發送。
apiVersion: v1 kind: ConfigMap metadata: name: prometheus-rules labels: name: prometheus-rules namespace: monitoring data: alert-rules.yaml: |- groups: - name: Deployment rules: - alert: Deployment at 0 Replicas annotations: summary: Deployment {{$labels.deployment}} in {{$labels.namespace}} is currently having no pods running expr: | sum(kube_deployment_status_replicas{pod_template_hash=""}) by (deployment,namespace) < 1 for: 1m labels: team: devops - alert: HPA Scaling Limited annotations: summary: HPA named {{$labels.hpa}} in {{$labels.namespace}} namespace has reached scaling limited state expr: | (sum(kube_hpa_status_condition{condition="ScalingLimited",status="true"}) by (hpa,namespace)) == 1 for: 1m labels: team: devops - alert: HPA at MaxCapacity annotations: summary: HPA named {{$labels.hpa}} in {{$labels.namespace}} namespace is running at Max Capacity expr: | ((sum(kube_hpa_spec_max_replicas) by (hpa,namespace)) - (sum(kube_hpa_status_current_replicas) by (hpa,namespace))) == 0 for: 1m labels: team: devops - name: Pods rules: - alert: Container restarted annotations: summary: Container named {{$labels.container}} in {{$labels.pod}} in {{$labels.namespace}} was restarted expr: | sum(increase(kube_pod_container_status_restarts_total{namespace!="kube-system",pod_template_hash=""}[1m])) by (pod,namespace,container) > 0 for: 0m labels: team: dev - alert: High Memory Usage of Container annotations: summary: Container named {{$labels.container}} in {{$labels.pod}} in {{$labels.namespace}} is using more than 75% of Memory Limit expr: | ((( sum(container_memory_usage_bytes{image!="",container_name!="POD", namespace!="kube-system"}) by (namespace,container_name,pod_name) / sum(container_spec_memory_limit_bytes{image!="",container_name!="POD",namespace!="kube-system"}) by (namespace,container_name,pod_name) ) * 100 ) < +Inf ) > 75 for: 5m labels: team: dev - alert: High CPU Usage of Container annotations: summary: Container named {{$labels.container}} in {{$labels.pod}} in {{$labels.namespace}} is using more than 75% of CPU Limit expr: | ((sum(irate(container_cpu_usage_seconds_total{image!="",container_name!="POD", namespace!="kube-system"}[30s])) by (namespace,container_name,pod_name) / sum(container_spec_cpu_quota{image!="",container_name!="POD", namespace!="kube-system"} / container_spec_cpu_period{image!="",container_name!="POD", namespace!="kube-system"}) by (namespace,container_name,pod_name) ) * 100) > 75 for: 5m labels: team: dev - name: Nodes rules: - alert: High Node Memory Usage annotations: summary: Node {{$labels.kubernetes_io_hostname}} has more than 80% memory used. Plan Capcity expr: | (sum (container_memory_working_set_bytes{id="/",container_name!="POD"}) by (kubernetes_io_hostname) / sum (machine_memory_bytes{}) by (kubernetes_io_hostname) * 100) > 80 for: 5m labels: team: devops - alert: High Node CPU Usage annotations: summary: Node {{$labels.kubernetes_io_hostname}} has more than 80% allocatable cpu used. Plan Capacity. expr: | (sum(rate(container_cpu_usage_seconds_total{id="/", container_name!="POD"}[1m])) by (kubernetes_io_hostname) / sum(machine_cpu_cores) by (kubernetes_io_hostname) * 100) > 80 for: 5m labels: team: devops - alert: High Node Disk Usage annotations: summary: Node {{$labels.kubernetes_io_hostname}} has more than 85% disk used. Plan Capacity. expr: | (sum(container_fs_usage_bytes{device=~"^/dev/[sv]d[a-z][1-9]$",id="/",container_name!="POD"}) by (kubernetes_io_hostname) / sum(container_fs_limit_bytes{container_name!="POD",device=~"^/dev/[sv]d[a-z][1-9]$",id="/"}) by (kubernetes_io_hostname)) * 100 > 85 for: 5m labels: team: devops
apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: fast namespace: monitoring provisioner: kubernetes.io/gce-pd allowVolumeExpansion: true --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: prometheus namespace: monitoring spec: replicas: 3 serviceName: prometheus-service template: metadata: labels: app: prometheus thanos-store-api: "true" spec: serviceAccountName: monitoring containers: - name: prometheus image: prom/prometheus:v2.4.3 args: - "--config.file=/etc/prometheus-shared/prometheus.yaml" - "--storage.tsdb.path=/prometheus/" - "--web.enable-lifecycle" - "--storage.tsdb.no-lockfile" - "--storage.tsdb.min-block-duration=2h" - "--storage.tsdb.max-block-duration=2h" ports: - name: prometheus containerPort: 9090 volumeMounts: - name: prometheus-storage mountPath: /prometheus/ - name: prometheus-config-shared mountPath: /etc/prometheus-shared/ - name: prometheus-rules mountPath: /etc/prometheus/rules - name: thanos image: quay.io/thanos/thanos:v0.8.0 args: - "sidecar" - "--log.level=debug" - "--tsdb.path=/prometheus" - "--prometheus.url=http://127.0.0.1:9090" - "--objstore.config={type: GCS, config: {bucket: prometheus-long-term}}" - "--reloader.config-file=/etc/prometheus/prometheus.yaml.tmpl" - "--reloader.config-envsubst-file=/etc/prometheus-shared/prometheus.yaml" - "--reloader.rule-dir=/etc/prometheus/rules/" env: - name: POD_NAME valueFrom: fieldRef: fieldPath: metadata.name - name : GOOGLE_APPLICATION_CREDENTIALS value: /etc/secret/thanos-gcs-credentials.json ports: - name: http-sidecar containerPort: 10902 - name: grpc containerPort: 10901 livenessProbe: httpGet: port: 10902 path: /-/healthy readinessProbe: httpGet: port: 10902 path: /-/ready volumeMounts: - name: prometheus-storage mountPath: /prometheus - name: prometheus-config-shared mountPath: /etc/prometheus-shared/ - name: prometheus-config mountPath: /etc/prometheus - name: prometheus-rules mountPath: /etc/prometheus/rules - name: thanos-gcs-credentials mountPath: /etc/secret readOnly: false securityContext: fsGroup: 2000 runAsNonRoot: true runAsUser: 1000 volumes: - name: prometheus-config configMap: defaultMode: 420 name: prometheus-server-conf - name: prometheus-config-shared emptyDir: {} - name: prometheus-rules configMap: name: prometheus-rules - name: thanos-gcs-credentials secret: secretName: thanos-gcs-credentials volumeClaimTemplates: - metadata: name: prometheus-storage namespace: monitoring spec: accessModes: [ "ReadWriteOnce" ] storageClassName: fast resources: requests: storage: 20Gi
關於上面提供的manifest,理解如下內容很重要:
Prometheus是做爲一個有狀態集部署的,有3個副本,每一個副本動態地提供本身的持久化卷。
Prometheus配置是由Thanos sidecar容器使用咱們上面建立的模板文件生成的。
Thanos處理數據壓縮,所以咱們須要設置--storage.tsdb.min-block-duration=2h和--storage.tsdb.max-block-duration=2h。
Prometheus有狀態集被標記爲thanos-store-api: true,這樣每一個pod就會被咱們接下來建立的headless service發現。正是這個headless service將被Thanos Querier用來查詢全部Prometheus實例的數據。咱們還將相同的標籤應用於Thanos Store和Thanos Ruler組件,這樣它們也會被Querier發現,並可用於查詢指標。
GCS bucket credentials路徑是使用GOOGLE_APPLICATION_CREDENTIALS環境變量提供的,配置文件是由咱們做爲前期準備中建立的secret掛載到它上面的。
apiVersion: v1 kind: Service metadata: name: prometheus-0-service annotations: prometheus.io/scrape: "true" prometheus.io/port: "9090" namespace: monitoring labels: name: prometheus spec: selector: statefulset.kubernetes.io/pod-name: prometheus-0 ports: - name: prometheus port: 8080 targetPort: prometheus --- apiVersion: v1 kind: Service metadata: name: prometheus-1-service annotations: prometheus.io/scrape: "true" prometheus.io/port: "9090" namespace: monitoring labels: name: prometheus spec: selector: statefulset.kubernetes.io/pod-name: prometheus-1 ports: - name: prometheus port: 8080 targetPort: prometheus --- apiVersion: v1 kind: Service metadata: name: prometheus-2-service annotations: prometheus.io/scrape: "true" prometheus.io/port: "9090" namespace: monitoring labels: name: prometheus spec: selector: statefulset.kubernetes.io/pod-name: prometheus-2 ports: - name: prometheus port: 8080 targetPort: prometheus --- #This service creates a srv record for querier to find about store-api's apiVersion: v1 kind: Service metadata: name: thanos-store-gateway namespace: monitoring spec: type: ClusterIP clusterIP: None ports: - name: grpc port: 10901 targetPort: grpc selector: thanos-store-api: "true"
除了上述方法外,你還能夠點擊這篇文章瞭解如何在Rancher上快速部署和配置Prometheus服務。
咱們爲stateful set中的每一個Prometheus pod建立了不一樣的服務,儘管這並非必要的。這些服務的建立只是爲了調試。上文已經解釋了 thanos-store-gateway headless service的目的。咱們稍後將使用一個 ingress 對象來暴露 Prometheus 服務。
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: apps/v1 kind: Deployment metadata: name: thanos-querier namespace: monitoring labels: app: thanos-querier spec: replicas: 1 selector: matchLabels: app: thanos-querier template: metadata: labels: app: thanos-querier spec: containers: - name: thanos image: quay.io/thanos/thanos:v0.8.0 args: - query - --log.level=debug - --query.replica-label=replica - --store=dnssrv+thanos-store-gateway:10901 ports: - name: http containerPort: 10902 - name: grpc containerPort: 10901 livenessProbe: httpGet: port: http path: /-/healthy readinessProbe: httpGet: port: http path: /-/ready --- apiVersion: v1 kind: Service metadata: labels: app: thanos-querier name: thanos-querier namespace: monitoring spec: ports: - port: 9090 protocol: TCP targetPort: http name: http selector: app: thanos-querier
這是Thanos部署的主要內容之一。請注意如下幾點:
容器參數-store=dnssrv+thanos-store-gateway:10901
有助於發現全部應查詢的指標數據的組件。
thanos-querier服務提供了一個Web接口來運行PromQL查詢。它還能夠選擇在不一樣的Prometheus集羣中去重複刪除數據。
這是咱們提供Grafana做爲全部dashboard的數據源的終點(end point)。
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: thanos-store-gateway namespace: monitoring labels: app: thanos-store-gateway spec: replicas: 1 selector: matchLabels: app: thanos-store-gateway serviceName: thanos-store-gateway template: metadata: labels: app: thanos-store-gateway thanos-store-api: "true" spec: containers: - name: thanos image: quay.io/thanos/thanos:v0.8.0 args: - "store" - "--log.level=debug" - "--data-dir=/data" - "--objstore.config={type: GCS, config: {bucket: prometheus-long-term}}" - "--index-cache-size=500MB" - "--chunk-pool-size=500MB" env: - name : GOOGLE_APPLICATION_CREDENTIALS value: /etc/secret/thanos-gcs-credentials.json ports: - name: http containerPort: 10902 - name: grpc containerPort: 10901 livenessProbe: httpGet: port: 10902 path: /-/healthy readinessProbe: httpGet: port: 10902 path: /-/ready volumeMounts: - name: thanos-gcs-credentials mountPath: /etc/secret readOnly: false volumes: - name: thanos-gcs-credentials secret: secretName: thanos-gcs-credentials ---
這將建立存儲組件,它將從對象存儲中向Querier提供指標。
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: v1 kind: ConfigMap metadata: name: thanos-ruler-rules namespace: monitoring data: alert_down_services.rules.yaml: | groups: - name: metamonitoring rules: - alert: PrometheusReplicaDown annotations: message: Prometheus replica in cluster {{$labels.cluster}} has disappeared from Prometheus target discovery. expr: | sum(up{cluster="prometheus-ha", instance=~".*:9090", job="kubernetes-service-endpoints"}) by (job,cluster) < 3 for: 15s labels: severity: critical --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: labels: app: thanos-ruler name: thanos-ruler namespace: monitoring spec: replicas: 1 selector: matchLabels: app: thanos-ruler serviceName: thanos-ruler template: metadata: labels: app: thanos-ruler thanos-store-api: "true" spec: containers: - name: thanos image: quay.io/thanos/thanos:v0.8.0 args: - rule - --log.level=debug - --data-dir=/data - --eval-interval=15s - --rule-file=/etc/thanos-ruler/*.rules.yaml - --alertmanagers.url=http://alertmanager:9093 - --query=thanos-querier:9090 - "--objstore.config={type: GCS, config: {bucket: thanos-ruler}}" - --label=ruler_cluster="prometheus-ha" - --label=replica="$(POD_NAME)" env: - name : GOOGLE_APPLICATION_CREDENTIALS value: /etc/secret/thanos-gcs-credentials.json - name: POD_NAME valueFrom: fieldRef: fieldPath: metadata.name ports: - name: http containerPort: 10902 - name: grpc containerPort: 10901 livenessProbe: httpGet: port: http path: /-/healthy readinessProbe: httpGet: port: http path: /-/ready volumeMounts: - mountPath: /etc/thanos-ruler name: config - name: thanos-gcs-credentials mountPath: /etc/secret readOnly: false volumes: - configMap: name: thanos-ruler-rules name: config - name: thanos-gcs-credentials secret: secretName: thanos-gcs-credentials --- apiVersion: v1 kind: Service metadata: labels: app: thanos-ruler name: thanos-ruler namespace: monitoring spec: ports: - port: 9090 protocol: TCP targetPort: http name: http selector: app: thanos-ruler
如今,若是你在與咱們的工做負載相同的命名空間中啓動交互式shell,並嘗試查看咱們的thanos-store-gateway解析到哪些pods,你會看到如下內容:
root@my-shell-95cb5df57-4q6w8:/# nslookup thanos-store-gateway Server: 10.63.240.10 Address: 10.63.240.10#53 Name: thanos-store-gateway.monitoring.svc.cluster.local Address: 10.60.25.2 Name: thanos-store-gateway.monitoring.svc.cluster.local Address: 10.60.25.4 Name: thanos-store-gateway.monitoring.svc.cluster.local Address: 10.60.30.2 Name: thanos-store-gateway.monitoring.svc.cluster.local Address: 10.60.30.8 Name: thanos-store-gateway.monitoring.svc.cluster.local Address: 10.60.31.2 root@my-shell-95cb5df57-4q6w8:/# exit
上面返回的IP對應的是咱們的Prometheus Pod、thanos-store
和thanos-ruler
。這能夠被驗證爲:
$ kubectl get pods -o wide -l thanos-store-api="true" NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES prometheus-0 2/2 Running 0 100m 10.60.31.2 gke-demo-1-pool-1-649cbe02-jdnv <none> <none> prometheus-1 2/2 Running 0 14h 10.60.30.2 gke-demo-1-pool-1-7533d618-kxkd <none> <none> prometheus-2 2/2 Running 0 31h 10.60.25.2 gke-demo-1-pool-1-4e9889dd-27gc <none> <none> thanos-ruler-0 1/1 Running 0 100m 10.60.30.8 gke-demo-1-pool-1-7533d618-kxkd <none> <none> thanos-store-gateway-0 1/1 Running 0 14h 10.60.25.4 gke-demo-1-pool-1-4e9889dd-27gc <none> <none>
apiVersion: v1 kind: Namespace metadata: name: monitoring --- kind: ConfigMap apiVersion: v1 metadata: name: alertmanager namespace: monitoring data: config.yml: |- global: resolve_timeout: 5m slack_api_url: "<your_slack_hook>" victorops_api_url: "<your_victorops_hook>" templates: - '/etc/alertmanager-templates/*.tmpl' route: group_by: ['alertname', 'cluster', 'service'] group_wait: 10s group_interval: 1m repeat_interval: 5m receiver: default routes: - match: team: devops receiver: devops continue: true - match: team: dev receiver: dev continue: true receivers: - name: 'default' - name: 'devops' victorops_configs: - api_key: '<YOUR_API_KEY>' routing_key: 'devops' message_type: 'CRITICAL' entity_display_name: '{{ .CommonLabels.alertname }}' state_message: 'Alert: {{ .CommonLabels.alertname }}. Summary:{{ .CommonAnnotations.summary }}. RawData: {{ .CommonLabels }}' slack_configs: - channel: '#k8-alerts' send_resolved: true - name: 'dev' victorops_configs: - api_key: '<YOUR_API_KEY>' routing_key: 'dev' message_type: 'CRITICAL' entity_display_name: '{{ .CommonLabels.alertname }}' state_message: 'Alert: {{ .CommonLabels.alertname }}. Summary:{{ .CommonAnnotations.summary }}. RawData: {{ .CommonLabels }}' slack_configs: - channel: '#k8-alerts' send_resolved: true --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: alertmanager namespace: monitoring spec: replicas: 1 selector: matchLabels: app: alertmanager template: metadata: name: alertmanager labels: app: alertmanager spec: containers: - name: alertmanager image: prom/alertmanager:v0.15.3 args: - '--config.file=/etc/alertmanager/config.yml' - '--storage.path=/alertmanager' ports: - name: alertmanager containerPort: 9093 volumeMounts: - name: config-volume mountPath: /etc/alertmanager - name: alertmanager mountPath: /alertmanager volumes: - name: config-volume configMap: name: alertmanager - name: alertmanager emptyDir: {} --- apiVersion: v1 kind: Service metadata: annotations: prometheus.io/scrape: 'true' prometheus.io/path: '/metrics' labels: name: alertmanager name: alertmanager namespace: monitoring spec: selector: app: alertmanager ports: - name: alertmanager protocol: TCP port: 9093 targetPort: 9093
這將建立咱們的Alertmanager部署,它將根據Prometheus規則生成全部告警。
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: rbac.authorization.k8s.io/v1 # kubernetes versions before 1.8.0 should use rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: kube-state-metrics roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: kube-state-metrics subjects: - kind: ServiceAccount name: kube-state-metrics namespace: monitoring --- apiVersion: rbac.authorization.k8s.io/v1 # kubernetes versions before 1.8.0 should use rbac.authorization.k8s.io/v1beta1 kind: ClusterRole metadata: name: kube-state-metrics rules: - apiGroups: [""] resources: - configmaps - secrets - nodes - pods - services - resourcequotas - replicationcontrollers - limitranges - persistentvolumeclaims - persistentvolumes - namespaces - endpoints verbs: ["list", "watch"] - apiGroups: ["extensions"] resources: - daemonsets - deployments - replicasets verbs: ["list", "watch"] - apiGroups: ["apps"] resources: - statefulsets verbs: ["list", "watch"] - apiGroups: ["batch"] resources: - cronjobs - jobs verbs: ["list", "watch"] - apiGroups: ["autoscaling"] resources: - horizontalpodautoscalers verbs: ["list", "watch"] --- apiVersion: rbac.authorization.k8s.io/v1 # kubernetes versions before 1.8.0 should use rbac.authorization.k8s.io/v1beta1 kind: RoleBinding metadata: name: kube-state-metrics namespace: monitoring roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: kube-state-metrics-resizer subjects: - kind: ServiceAccount name: kube-state-metrics namespace: monitoring --- apiVersion: rbac.authorization.k8s.io/v1 # kubernetes versions before 1.8.0 should use rbac.authorization.k8s.io/v1beta1 kind: Role metadata: namespace: monitoring name: kube-state-metrics-resizer rules: - apiGroups: [""] resources: - pods verbs: ["get"] - apiGroups: ["extensions"] resources: - deployments resourceNames: ["kube-state-metrics"] verbs: ["get", "update"] --- apiVersion: v1 kind: ServiceAccount metadata: name: kube-state-metrics namespace: monitoring --- apiVersion: apps/v1 kind: Deployment metadata: name: kube-state-metrics namespace: monitoring spec: selector: matchLabels: k8s-app: kube-state-metrics replicas: 1 template: metadata: labels: k8s-app: kube-state-metrics spec: serviceAccountName: kube-state-metrics containers: - name: kube-state-metrics image: quay.io/mxinden/kube-state-metrics:v1.4.0-gzip.3 ports: - name: http-metrics containerPort: 8080 - name: telemetry containerPort: 8081 readinessProbe: httpGet: path: /healthz port: 8080 initialDelaySeconds: 5 timeoutSeconds: 5 - name: addon-resizer image: k8s.gcr.io/addon-resizer:1.8.3 resources: limits: cpu: 150m memory: 50Mi requests: cpu: 150m memory: 50Mi env: - name: MY_POD_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: MY_POD_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace command: - /pod_nanny - --container=kube-state-metrics - --cpu=100m - --extra-cpu=1m - --memory=100Mi - --extra-memory=2Mi - --threshold=5 - --deployment=kube-state-metrics --- apiVersion: v1 kind: Service metadata: name: kube-state-metrics namespace: monitoring labels: k8s-app: kube-state-metrics annotations: prometheus.io/scrape: 'true' spec: ports: - name: http-metrics port: 8080 targetPort: http-metrics protocol: TCP - name: telemetry port: 8081 targetPort: telemetry protocol: TCP selector: k8s-app: kube-state-metrics
Kubestate指標部署須要轉發一些重要的容器指標,這些指標不是kubelet原生暴露的,所以不能直接提供給Prometheus。
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: extensions/v1beta1 kind: DaemonSet metadata: name: node-exporter namespace: monitoring labels: name: node-exporter spec: template: metadata: labels: name: node-exporter annotations: prometheus.io/scrape: "true" prometheus.io/port: "9100" spec: hostPID: true hostIPC: true hostNetwork: true containers: - name: node-exporter image: prom/node-exporter:v0.16.0 securityContext: privileged: true args: - --path.procfs=/host/proc - --path.sysfs=/host/sys ports: - containerPort: 9100 protocol: TCP resources: limits: cpu: 100m memory: 100Mi requests: cpu: 10m memory: 100Mi volumeMounts: - name: dev mountPath: /host/dev - name: proc mountPath: /host/proc - name: sys mountPath: /host/sys - name: rootfs mountPath: /rootfs volumes: - name: proc hostPath: path: /proc - name: dev hostPath: path: /dev - name: sys hostPath: path: /sys - name: rootfs hostPath: path: /
Node-Exporter daemonset在每一個節點上運行一個node-exporter的pod,並暴露出很是重要的節點相關指標,這些指標能夠被Prometheus實例拉取。
apiVersion: v1 kind: Namespace metadata: name: monitoring --- apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: fast namespace: monitoring provisioner: kubernetes.io/gce-pd allowVolumeExpansion: true --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: grafana namespace: monitoring spec: replicas: 1 serviceName: grafana template: metadata: labels: task: monitoring k8s-app: grafana spec: containers: - name: grafana image: k8s.gcr.io/heapster-grafana-amd64:v5.0.4 ports: - containerPort: 3000 protocol: TCP volumeMounts: - mountPath: /etc/ssl/certs name: ca-certificates readOnly: true - mountPath: /var name: grafana-storage env: - name: GF_SERVER_HTTP_PORT value: "3000" # The following env variables are required to make Grafana accessible via # the kubernetes api-server proxy. On production clusters, we recommend # removing these env variables, setup auth for grafana, and expose the grafana # service using a LoadBalancer or a public IP. - name: GF_AUTH_BASIC_ENABLED value: "false" - name: GF_AUTH_ANONYMOUS_ENABLED value: "true" - name: GF_AUTH_ANONYMOUS_ORG_ROLE value: Admin - name: GF_SERVER_ROOT_URL # If you're only using the API Server proxy, set this value instead: # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy value: / volumes: - name: ca-certificates hostPath: path: /etc/ssl/certs volumeClaimTemplates: - metadata: name: grafana-storage namespace: monitoring spec: accessModes: [ "ReadWriteOnce" ] storageClassName: fast resources: requests: storage: 5Gi --- apiVersion: v1 kind: Service metadata: labels: kubernetes.io/cluster-service: 'true' kubernetes.io/name: grafana name: grafana namespace: monitoring spec: ports: - port: 3000 targetPort: 3000 selector: k8s-app: grafana
這將建立咱們的Grafana部署和服務,它將使用咱們的Ingress對象暴露。爲了作到這一點,咱們應該添加Thanos-Querier做爲咱們Grafana部署的數據源:
點擊添加數據源
設置Name: DS_PROMETHEUS
設置Type: Prometheus
設置URL: http://thanos-querier:9090
保存並測試。如今你能夠構建你的自定義dashboard或從grafana.net簡單導入dashboard。Dashboard #315和#1471都很是適合入門。
apiVersion: extensions/v1beta1 kind: Ingress metadata: name: monitoring-ingress namespace: monitoring annotations: kubernetes.io/ingress.class: "nginx" spec: rules: - host: grafana.<yourdomain>.com http: paths: - path: / backend: serviceName: grafana servicePort: 3000 - host: prometheus-0.<yourdomain>.com http: paths: - path: / backend: serviceName: prometheus-0-service servicePort: 8080 - host: prometheus-1.<yourdomain>.com http: paths: - path: / backend: serviceName: prometheus-1-service servicePort: 8080 - host: prometheus-2.<yourdomain>.com http: paths: - path: / backend: serviceName: prometheus-2-service servicePort: 8080 - host: alertmanager.<yourdomain>.com http: paths: - path: / backend: serviceName: alertmanager servicePort: 9093 - host: thanos-querier.<yourdomain>.com http: paths: - path: / backend: serviceName: thanos-querier servicePort: 9090 - host: thanos-ruler.<yourdomain>.com http: paths: - path: / backend: serviceName: thanos-ruler servicePort: 9090
這是拼圖的最後一塊。有助於將咱們的全部服務暴露在Kubernetes集羣以外,並幫助咱們訪問它們。確保將
如今你應該能夠訪問Thanos Querier,網址是:http://thanos-querier.
確保選中重複數據刪除(deduplication)。
若是你點擊Store,能夠看到全部由thanos-store-gateway
服務發現的活動端點。
如今你能夠在Grafana中添加Thanos Querier做爲數據源,並開始建立dashboard。
Kubernetes集羣監控dashboard
Kubernetes節點監控dashboard
將Thanos與Prometheus集成在一塊兒,無疑提供了橫向擴展Prometheus的能力,並且因爲Thanos-Querier可以從其餘querier實例中提取指標數據,所以實際上你能夠跨集羣提取指標數據,並在一個單一的儀表板中可視化。
咱們還可以將指標數據歸檔在對象存儲中,爲咱們的監控系統提供無限的存儲空間,同時從對象存儲自己提供指標數據。這種設置的主要成本部分能夠歸結爲對象存儲(S3或GCS)。若是咱們對它們應用適當的保留策略,能夠進一步下降成本。
然而,實現這一切須要你進行大量的配置。上面提供的manifest已經在生產環境中進行了測試,你能夠大膽進行嘗試。