來源 https://www.jianshu.com/p/495ea7ce649bhtml
參考: 線程局部變量 __thread 關鍵字linux
- __thread是GCC內置的線程局部存儲設施,__thread變量每個線程有一份獨立實體,各個線程的值互不干擾。能夠用來修飾那些帶有全局性且值可能變,可是各線程獨立不干擾的變量;
- 只能修飾POD類型(相似整型指針的標量),不能修飾class類型,由於沒法自動調用構造函數和析構函數;
- 能夠用於修飾全局變量,函數內的靜態變量,不能修飾函數的局部變量或者class的普通成員變量;
- 且__thread變量值只能初始化爲編譯器常量。
#include <pthread.h> #include <cstdio> #include <cstdlib> #include <assert.h> #include <stdint.h> __thread uint64_t pkey = 0; void run2( ) { FILE* fp = NULL; if( !pkey ) { char fName[128] = ""; sprintf( fName, "thread%lu.log", static_cast<unsigned long>( pthread_self() ) ); fp = fopen( fName, "w" ); pkey = reinterpret_cast<uint64_t>( fp ); }else fp = reinterpret_cast<FILE*>( pkey ); fprintf( fp, "hello __thread 2\n" ); return ; } void* run1( void* arg ) { FILE* fp = NULL; if( !pkey ) { char fName[128] = ""; sprintf( fName, "thread%lu.log", static_cast<unsigned long>( pthread_self() ) ); fp = fopen( fName, "w" ); pkey = reinterpret_cast<uint64_t>( fp ); }else fp = reinterpret_cast<FILE*>( pkey ); fprintf( fp, "hello __thread 1\n" ); run2(); return NULL; } int main(int argc, char const *argv[]) { char fName[128] = ""; sprintf( fName, "thread%lu.log", static_cast<unsigned long>( pthread_self() ) ); FILE* fp = fopen( fName, "w" ); pkey = reinterpret_cast<uint64_t>( fp ); fprintf( fp, "hello __thread\n" ); pthread_t threads[2]; pthread_create( &threads[0], NULL, run1, NULL ); pthread_create( &threads[1], NULL, run1, NULL ); pthread_join( threads[0], NULL ); pthread_join( threads[1], NULL ); return 0; }
參考:關鍵字:__thread & pthread_key_tios
pthread_key_t 優於 __thread 從下面幾個方面來講:c++
- 依賴 linux 環境的 libpthread, 而非 gcc 編譯器可移植性加強
- 如上所示,能夠認爲對每一個 pthread_key, 庫內部提供了一個 __thread void* 接受 pthread_setspecific 設置的指針,從而能夠指向 class 類型
- pthread_key_t 能夠做爲函數的局部變量,也能夠做爲局部變量。
#include <pthread.h> // pthread_key_t, pthread_setspecific, pthread_getspecific, pthread_self // pthread_key_create, pthread_key_delete, pthread_create, pthread_join #include <iostream> #include <cstdio> #include <cstdlib> using namespace std; static pthread_key_t pkt; // 1, callback function to destroy resource associated with key // 2, the in_param is pthread_getspecific() // 3, gettid()是內核給線程(輕量級進程)分配的進程id,全局(全部進程中)惟一 // 4, pthread_self()是在用戶態實現的,獲取的id其實是主線程分配給子線程的線程描述符的地址而已,只是在當前進程空間中是惟一的。 void destroy( void *arg ) { printf("exit at thread %d, fclose file \n", static_cast<int>( pthread_self() ) ); if( arg ) fclose( reinterpret_cast<FILE*>(arg) ); } // 5, pthread_getspecific() Return current value of the thread-specific data slot identified by KEY. void writeLog( const char* log ) { FILE* logHandle = reinterpret_cast<FILE*>( pthread_getspecific( pkt) ); fprintf( logHandle, "%s\n", log ); } // 6, pthread_setspecific Store POINTER in the thread-specific data slot identified by KEY void* work( void* arg) { FILE* logHandle = NULL; char fileName[128] = ""; sprintf( fileName, "Thread%d.log", static_cast<int>(pthread_self()) ); logHandle = fopen( fileName, "w"); pthread_setspecific( pkt, reinterpret_cast<void*>( logHandle ) ); writeLog( "Thread starting." ); } // 7, pthread_key_create( &pkt, destroy ) Create a key value identifying a location in the thread-specific //identifying 識別 // data area. Each thread maintains a distinct thread-specific data area. // the destroy callback function will called with the key is dectroyed // 8, pthread_key_delete( ) detroy the key use callback function clear the resource int main(int argc, char const *argv[]) { pthread_key_create( &pkt, destroy ); pthread_t pids[2] = {0}; pthread_create( &pids[0], NULL, work, NULL ); pthread_create( &pids[1], NULL, work, NULL ); pthread_join( pids[0], NULL ); pthread_join( pids[1], NULL ); pthread_key_delete( pkt ); printf("stop\n"); return 0; }
參考:關鍵字:__thread & pthread_key_t安全
對 pthread_key_t 進行了 RAII 的封裝,使用更加安全。app
#include <pthread.h> #include <boost/noncopyable.hpp> // noncopyable #include <boost/checked_delete.hpp> // check_delete #include <cstdio> #include <cstdlib> #include <string> #include <stdexcept> template<typename T> class ThreadLocal : public boost::noncopyable { public: typedef ThreadLocal<T>* pThreadLocal; ThreadLocal() { pthread_key_create( &pkey_, &ThreadLocal::destroy ); } ~ThreadLocal() { pthread_key_delete( pkey_ ); } T& value() { T* pvalue = reinterpret_cast<T*>( pthread_getspecific( pkey_ ) ); if( !pvalue ) { T* obj = new T(); pthread_setspecific( pkey_, reinterpret_cast<void*>( obj ) ); pvalue = obj; } return *pvalue; } private: static void destroy( void* arg ) { T* obj = reinterpret_cast<T*>( arg ); boost::checked_delete( obj ); } pthread_key_t pkey_; }; class Logger { public: Logger() { char fName[128] = ""; sprintf( fName, "log_%lu.log", static_cast<unsigned long>( pthread_self() ) ); fp = fopen( fName, "w" ); if( !fp ) throw std::runtime_error( std::string("can not create ") + fName ); } ~Logger() { fclose( fp ); } void log( const std::string& s ) { fprintf( fp, "%s\n", s.c_str() ); } private: FILE* fp; }; void* run( void* arg ) { auto ptllogger = reinterpret_cast< ThreadLocal<Logger>::pThreadLocal>( arg); Logger& plogger = ptllogger->value(); plogger.log( "Hello thread local" ); } int main() { ThreadLocal<Logger>::pThreadLocal p = new ThreadLocal<Logger>; Logger& plogger = p->value(); plogger.log( "Hello thread local" ); pthread_t threads[2] = {0}; pthread_create( &threads[0], NULL, run, reinterpret_cast<void*>( p ) ); pthread_create( &threads[1], NULL, run, reinterpret_cast<void*>( p ) ); pthread_join( threads[0], NULL ); pthread_join( threads[1], NULL ); delete p; }
參見:深刻探索C++對象模型之指向成員函數的指針ide
class A { public: static void staticmember(){cout<<"static"<<endl;} //static member void nonstatic(){cout<<"nonstatic"<<endl;} //nonstatic member virtual void virtualmember(){cout<<"virtual"<<endl;};//virtual member }; int main() { A a; //static成員函數,取得的是該函數在內存中的實際地址,並且由於static成員是全局的,因此不能用A::限定符 void (*ptrstatic)() = &A::staticmember; //nonstatic成員函數 取得的是該函數在內存中的實際地址 void (A::*ptrnonstatic)() = &A::nonstatic; //虛函數取得的是虛函數表中的偏移值,這樣能夠保證能過指針調用時一樣的多態效果 void (A::*ptrvirtual)() = &A::virtualmember; //函數指針的使用方式 ptrstatic(); (a.*ptrnonstatic)(); (a.*ptrvirtual)(); }
參見:c++ 數據類型轉換: static_cast dynamic_cast reinterpret_cast const_cast函數
- 上行轉換(把子類的指針或引用轉換成基類表示), 下行轉換(把基類指針或引用轉換成子類表示)
- 類指針或引用的上行轉換static_cast 和 dynamic_cast 均可以
- 類指針或引用的下行轉換用dynamic_cast而且判斷轉換後是否爲空
- 基本數據類型之間的轉換用static_cast, 可是因爲數值範圍的不一樣,須要用戶保證轉換的安全性
- 不一樣類型之間的指針或引用的轉換用reinterpret_cast,它的本質是對指向內存的比特位的重解釋
- 消除數據的const、volatile、__unaligned屬性,用const_cast
================ Endui